{"title":"Reweighted nonparametric likelihood inference for linear functionals","authors":"Karun Adusumilli, Taisuke Otsu, Chen Qiu","doi":"10.1214/23-ejs2168","DOIUrl":null,"url":null,"abstract":"This paper is concerned with inference on finite dimensional parameters in semiparametric moment condition models, where the moment functionals are linear with respect to unknown nuisance functions. By exploiting this linearity, we reformulate the inference problem via the Riesz representer, and develop a general inference procedure based on nonparametric likelihood. For treatment effect or missing data analysis, the Riesz representer is typically associated with the inverse propensity score even though the scope of our framework is much wider. In particular, we propose a two-step procedure, where the first step computes the projection weights to approximate the Riesz representer, and the second step reweights the moment conditions so that the likelihood increment admits an asymptotically pivotal chi-square calibration. Our reweighting method is naturally extended to inference on missing data, treatment effects, and data combination models, and other semiparametric problems. Simulation and real data examples illustrate usefulness of the proposed method. We note that our reweighting method and theoretical results are limited to linear functionals.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"5 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejs2168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with inference on finite dimensional parameters in semiparametric moment condition models, where the moment functionals are linear with respect to unknown nuisance functions. By exploiting this linearity, we reformulate the inference problem via the Riesz representer, and develop a general inference procedure based on nonparametric likelihood. For treatment effect or missing data analysis, the Riesz representer is typically associated with the inverse propensity score even though the scope of our framework is much wider. In particular, we propose a two-step procedure, where the first step computes the projection weights to approximate the Riesz representer, and the second step reweights the moment conditions so that the likelihood increment admits an asymptotically pivotal chi-square calibration. Our reweighting method is naturally extended to inference on missing data, treatment effects, and data combination models, and other semiparametric problems. Simulation and real data examples illustrate usefulness of the proposed method. We note that our reweighting method and theoretical results are limited to linear functionals.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.