首页 > 最新文献

Electronic Journal of Statistics最新文献

英文 中文
Estimation and inference in sparse multivariate regression and conditional Gaussian graphical models under an unbalanced distributed setting 非平衡分布环境下稀疏多元回归和条件高斯图形模型的估计与推理
IF 1.1 4区 数学 Q3 Decision Sciences Pub Date : 2024-01-01 DOI: 10.1214/23-ejs2193
Ensiyeh Nezakati, Eugen Pircalabelu
{"title":"Estimation and inference in sparse multivariate regression and conditional Gaussian graphical models under an unbalanced distributed setting","authors":"Ensiyeh Nezakati, Eugen Pircalabelu","doi":"10.1214/23-ejs2193","DOIUrl":"https://doi.org/10.1214/23-ejs2193","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140523728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimension-free bounds for sums of dependent matrices and operators with heavy-tailed distributions 重尾分布依存矩阵和算子之和的无维度边界
IF 1.1 4区 数学 Q3 Decision Sciences Pub Date : 2024-01-01 DOI: 10.1214/24-ejs2224
Shogo H. Nakakita, Pierre Alquier, Masaaki Imaizumi
{"title":"Dimension-free bounds for sums of dependent matrices and operators with heavy-tailed distributions","authors":"Shogo H. Nakakita, Pierre Alquier, Masaaki Imaizumi","doi":"10.1214/24-ejs2224","DOIUrl":"https://doi.org/10.1214/24-ejs2224","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140515766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the rate of convergence of two regression estimates defined by neural features which are easy to implement 分析由神经特征定义的两种回归估计的收敛率,易于实现
IF 1.1 4区 数学 Q3 Decision Sciences Pub Date : 2024-01-01 DOI: 10.1214/23-ejs2207
Alina Braun, Michael Kohler, Jeongik Cho, A. Krzyżak
{"title":"Analysis of the rate of convergence of two regression estimates defined by neural features which are easy to implement","authors":"Alina Braun, Michael Kohler, Jeongik Cho, A. Krzyżak","doi":"10.1214/23-ejs2207","DOIUrl":"https://doi.org/10.1214/23-ejs2207","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140518472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse-limit approximation for t-statistics t 统计量的稀疏极限近似值
IF 1.1 4区 数学 Q3 Decision Sciences Pub Date : 2024-01-01 DOI: 10.1214/24-ejs2238
Micól Tresoldi, Daniel Xiang, Peter McCullagh
{"title":"Sparse-limit approximation for t-statistics","authors":"Micól Tresoldi, Daniel Xiang, Peter McCullagh","doi":"10.1214/24-ejs2238","DOIUrl":"https://doi.org/10.1214/24-ejs2238","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140527192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Bayesian linear regression for distribution-valued covariates. 分布值协变量的直接贝叶斯线性回归。
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-01-01 Epub Date: 2024-08-27 DOI: 10.1214/24-ejs2275
Bohao Tang, Sandipan Pramanik, Yi Zhao, Brian Caffo, Abhirup Datta

In this manuscript, we study scalar-on-distribution regression; that is, instances where subject-specific distributions or densities are the covariates, related to a scalar outcome via a regression model. In practice, only repeated measures are observed from those covariate distributions and common approaches first use these to estimate subject-specific density functions, which are then used as covariates in standard scalar-on-function regression. We propose a simple and direct method for linear scalar-on-distribution regression that circumvents the intermediate step of estimating subject-specific covariate densities. We show that one can directly use the observed repeated measures as covariates and endow the regression function with a Gaussian process prior to obtain a closed form or conjugate Bayesian inference. Our method subsumes the standard Bayesian non-parametric regression using Gaussian processes as a special case, corresponding to covariates being Dirac-distributions. The model is also invariant to any transformation or ordering of the repeated measures. Theoretically, we show that, despite only using the observed repeated measures from the true density-valued covariates that generated the data, the method can achieve an optimal estimation error bound of the regression function. The theory extends beyond i.i.d. settings to accommodate certain forms of within-subject dependence among the repeated measures. To our knowledge, this is the first theoretical study on Bayesian regression using distribution-valued covariates. We propose numerous extensions including a scalable implementation using low-rank Gaussian processes and a generalization to non-linear scalar-on-distribution regression. Through simulation studies, we demonstrate that our method performs substantially better than approaches that require an intermediate density estimation step especially with a small number of repeated measures per subject. We apply our method to study association of age with activity counts.

在本手稿中,我们研究的是标量-分布回归,即以特定受试者的分布或密度作为协变量,通过回归模型与标量结果相关联的情况。在实践中,只能从这些协变量分布中观察到重复测量值,常用的方法首先使用这些协变量分布来估计特定受试者的密度函数,然后在标准的标量-函数回归中将其用作协变量。我们提出了一种简单直接的线性标量-分布回归方法,该方法避开了估计特定受试者协变量密度这一中间步骤。我们证明,可以直接使用观测到的重复测量值作为协变量,并为回归函数赋予高斯过程先验,从而获得封闭形式或共轭贝叶斯推断。我们的方法将使用高斯过程的标准贝叶斯非参数回归归为特例,与协变量为狄拉克分布相对应。该模型还不受重复测量的任何变换或排序的影响。我们从理论上证明,尽管只使用了从产生数据的真实密度值协变量中观察到的重复测量值,该方法仍能实现回归函数的最优估计误差约束。该理论超越了 i.i.d.设置,以适应重复测量中某些形式的受试者内依赖性。据我们所知,这是首次对使用分布值协变量的贝叶斯回归进行理论研究。我们提出了许多扩展建议,包括使用低秩高斯过程的可扩展实现,以及对分布上非线性标量回归的概括。通过模拟研究,我们证明了我们的方法比那些需要中间密度估计步骤的方法要好得多,尤其是在每个研究对象重复测量次数较少的情况下。我们将我们的方法应用于研究年龄与活动计数的关联。
{"title":"Direct Bayesian linear regression for distribution-valued covariates.","authors":"Bohao Tang, Sandipan Pramanik, Yi Zhao, Brian Caffo, Abhirup Datta","doi":"10.1214/24-ejs2275","DOIUrl":"10.1214/24-ejs2275","url":null,"abstract":"<p><p>In this manuscript, we study scalar-on-distribution regression; that is, instances where subject-specific distributions or densities are the covariates, related to a scalar outcome via a regression model. In practice, only repeated measures are observed from those covariate distributions and common approaches first use these to estimate subject-specific density functions, which are then used as covariates in standard scalar-on-function regression. We propose a simple and direct method for linear scalar-on-distribution regression that circumvents the intermediate step of estimating subject-specific covariate densities. We show that one can directly use the observed repeated measures as covariates and endow the regression function with a Gaussian process prior to obtain a closed form or conjugate Bayesian inference. Our method subsumes the standard Bayesian non-parametric regression using Gaussian processes as a special case, corresponding to covariates being Dirac-distributions. The model is also invariant to any transformation or ordering of the repeated measures. Theoretically, we show that, despite only using the observed repeated measures from the true density-valued covariates that generated the data, the method can achieve an optimal estimation error bound of the regression function. The theory extends beyond i.i.d. settings to accommodate certain forms of within-subject dependence among the repeated measures. To our knowledge, this is the first theoretical study on Bayesian regression using distribution-valued covariates. We propose numerous extensions including a scalable implementation using low-rank Gaussian processes and a generalization to non-linear scalar-on-distribution regression. Through simulation studies, we demonstrate that our method performs substantially better than approaches that require an intermediate density estimation step especially with a small number of repeated measures per subject. We apply our method to study association of age with activity counts.</p>","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Penalized estimation of panel count data using generalized estimating equation 使用广义估计方程对面板计数数据进行惩罚性估计
IF 1.1 4区 数学 Q3 Decision Sciences Pub Date : 2024-01-01 DOI: 10.1214/24-ejs2239
Minggen Lu
{"title":"Penalized estimation of panel count data using generalized estimating equation","authors":"Minggen Lu","doi":"10.1214/24-ejs2239","DOIUrl":"https://doi.org/10.1214/24-ejs2239","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140523297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limit theorems for entropic optimal transport maps and Sinkhorn divergence 熵优化输运图的极限定理和辛克霍恩分歧
IF 1.1 4区 数学 Q3 Decision Sciences Pub Date : 2024-01-01 DOI: 10.1214/24-ejs2217
Ziv Goldfeld, Kengo Kato, Gabriel Rioux, R. Sadhu
{"title":"Limit theorems for entropic optimal transport maps and Sinkhorn divergence","authors":"Ziv Goldfeld, Kengo Kato, Gabriel Rioux, R. Sadhu","doi":"10.1214/24-ejs2217","DOIUrl":"https://doi.org/10.1214/24-ejs2217","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140524800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A functional nonlinear mixed effects modeling framework for longitudinal functional responses 纵向功能反应的功能非线性混合效应建模框架
IF 1.1 4区 数学 Q3 Decision Sciences Pub Date : 2024-01-01 DOI: 10.1214/24-ejs2226
Linglong Kong, Xinchao Luo, Jinhan Xie, Lixing Zhu, Hongtu Zhu
{"title":"A functional nonlinear mixed effects modeling framework for longitudinal functional responses","authors":"Linglong Kong, Xinchao Luo, Jinhan Xie, Lixing Zhu, Hongtu Zhu","doi":"10.1214/24-ejs2226","DOIUrl":"https://doi.org/10.1214/24-ejs2226","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140518312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tradeoff between false discovery and true positive proportions for sparse high-dimensional logistic regression 稀疏高维逻辑回归的误发现率与真阳性比例之间的权衡
IF 1.1 4区 数学 Q3 Decision Sciences Pub Date : 2024-01-01 DOI: 10.1214/23-ejs2204
Jing Zhou, G. Claeskens
{"title":"A tradeoff between false discovery and true positive proportions for sparse high-dimensional logistic regression","authors":"Jing Zhou, G. Claeskens","doi":"10.1214/23-ejs2204","DOIUrl":"https://doi.org/10.1214/23-ejs2204","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140516066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Renewable Huber estimation method for streaming datasets 流数据集的可再生胡贝尔估算方法
IF 1.1 4区 数学 Q3 Decision Sciences Pub Date : 2024-01-01 DOI: 10.1214/24-ejs2223
Rong Jiang, Lei Liang, Keming Yu
{"title":"Renewable Huber estimation method for streaming datasets","authors":"Rong Jiang, Lei Liang, Keming Yu","doi":"10.1214/24-ejs2223","DOIUrl":"https://doi.org/10.1214/24-ejs2223","url":null,"abstract":"","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140525707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electronic Journal of Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1