Unexpected Noise in Next-Generation Mirror Material

IF 1.5 Q2 PHYSICS, MULTIDISCIPLINARY Physics Pub Date : 2023-10-03 DOI:10.1103/physics.16.170
Michael Schirber
{"title":"Unexpected Noise in Next-Generation Mirror Material","authors":"Michael Schirber","doi":"10.1103/physics.16.170","DOIUrl":null,"url":null,"abstract":"N ext-generation gravitational-wave detectors need to be less noisy if they are going to help solve lingering mysteries about black holes and neutron stars. One avenue for reducing noise is to improve the quality of the reflective materials used to determine gravitational-wave-induced length changes in such detectors. Now tests of gallium arsenide, a promising alternative mirror substance, reveal an unexpected amount of noise in the light-reflection properties of thin films made from thematerial [1]. The experiments were performed at cryogenic temperatures, which are being considered for some—but not all—future gravitational-wave detectors. Further testing is needed to assess the potential impact of this new noise on mirror design choices.","PeriodicalId":20136,"journal":{"name":"Physics","volume":"44 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physics.16.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

N ext-generation gravitational-wave detectors need to be less noisy if they are going to help solve lingering mysteries about black holes and neutron stars. One avenue for reducing noise is to improve the quality of the reflective materials used to determine gravitational-wave-induced length changes in such detectors. Now tests of gallium arsenide, a promising alternative mirror substance, reveal an unexpected amount of noise in the light-reflection properties of thin films made from thematerial [1]. The experiments were performed at cryogenic temperatures, which are being considered for some—but not all—future gravitational-wave detectors. Further testing is needed to assess the potential impact of this new noise on mirror design choices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新一代镜面材料中的意外噪音
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics
Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
6.20%
发文量
0
审稿时长
10 weeks
期刊最新文献
A Thermodynamic Comparison of Nanotip and Nanoblade Geometries for Ultrafast Laser Field Emission via the Finite Element Method Vacuum Interaction of Topological Strings at Short Distances Theory of Liquids for Studying the Conformational Flexibility of Biomolecules with Reference Interaction Site Model Approximation Optical Properties of Two Complementary Samples of Intermediate Seyfert Galaxies Single-Spin Asymmetry of Neutrons in Polarized pA Collisions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1