A novel method to produce sustainable wind resistant and water repellant fabric for outdoor sport clothing

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Industrial Textiles Pub Date : 2023-01-01 DOI:10.1177/15280837231184256
Veerakumar Arumugam, Alfred Iing Yoong Tok, Vitali Lipik
{"title":"A novel method to produce sustainable wind resistant and water repellant fabric for outdoor sport clothing","authors":"Veerakumar Arumugam, Alfred Iing Yoong Tok, Vitali Lipik","doi":"10.1177/15280837231184256","DOIUrl":null,"url":null,"abstract":"Clothing production have adverse impact on the environment due to inefficient energy utilization during production processing, huge consumption of water and usage of harmful chemicals. Therefore, this work aims to develop a sustainable wind resistant and water repellant fabric through novel technology that reduces production processing steps for efficient energy consumption without compromising required functional performances without durable water repellency coatings (DWR) and application of fluorinated chemicals. This development aims to overcome the drawbacks associated with multiple production processing steps, hazardous chemicals, delamination, degradation, and reduction in vapor permeability due to adhesive layer, etc. In this work, the one-layer fabric was developed using polyester filament yarn on one surface and polyamide low melt yarn on another surface using plaited knitting technique. Further, the fabric was thermally processed at different conditions to create uniform barrier film through melting and flowing of polyamide yarns on fabric surface. The optimized and efficient thermal processing parameters were determined using Box-Behnken design as 120°C, 30 s and 0.5 MPa which yielded a fabric membrane with air permeability of 33.5 cm 3 /s/cm 2 , highest resistance to surface wetting with grade 5, exhibited hydrophobicity with water contact angle (WCA) of 120° and water vapor transmission rate of 875.7 (g/(m 2 ·24 h)). Developed fabric also shows high abrasion resistant which would have increased clothing lifespan and comparable stiffness to commercially available wind stopper and water repellant fabrics.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15280837231184256","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Clothing production have adverse impact on the environment due to inefficient energy utilization during production processing, huge consumption of water and usage of harmful chemicals. Therefore, this work aims to develop a sustainable wind resistant and water repellant fabric through novel technology that reduces production processing steps for efficient energy consumption without compromising required functional performances without durable water repellency coatings (DWR) and application of fluorinated chemicals. This development aims to overcome the drawbacks associated with multiple production processing steps, hazardous chemicals, delamination, degradation, and reduction in vapor permeability due to adhesive layer, etc. In this work, the one-layer fabric was developed using polyester filament yarn on one surface and polyamide low melt yarn on another surface using plaited knitting technique. Further, the fabric was thermally processed at different conditions to create uniform barrier film through melting and flowing of polyamide yarns on fabric surface. The optimized and efficient thermal processing parameters were determined using Box-Behnken design as 120°C, 30 s and 0.5 MPa which yielded a fabric membrane with air permeability of 33.5 cm 3 /s/cm 2 , highest resistance to surface wetting with grade 5, exhibited hydrophobicity with water contact angle (WCA) of 120° and water vapor transmission rate of 875.7 (g/(m 2 ·24 h)). Developed fabric also shows high abrasion resistant which would have increased clothing lifespan and comparable stiffness to commercially available wind stopper and water repellant fabrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种生产户外运动服装用可持续抗风防水面料的新方法
服装生产过程中能源利用效率低下,耗水量巨大,使用有害化学物质,对环境造成了不利影响。因此,这项工作旨在通过新技术开发一种可持续的抗风和防水织物,减少生产加工步骤,实现有效的能源消耗,同时不影响所需的功能性能,而不需要耐用的防水涂层(DWR)和氟化化学品的应用。这一发展旨在克服与多个生产加工步骤、危险化学品、分层、降解以及由于粘接层而导致的透气性降低等相关的缺点。本文采用编结技术,以涤纶长丝为表面,聚酰胺低熔体纱为表面,开发了一层织物。在不同条件下对织物进行热处理,通过锦纶丝在织物表面的熔融和流动,形成均匀的阻隔膜。采用Box-Behnken设计确定了优化后的高效热加工参数为120℃、30 s、0.5 MPa,得到的织物膜透气性为33.5 cm 3 /s/cm 2,抗表面润湿性最高,为5级,疏水接触角为120°,水蒸气透过率为875.7 (g/(m 2·24 h))。开发的织物还显示出高耐磨性,这将增加服装的使用寿命和硬度,可与市售的防风和防水织物相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Textiles
Journal of Industrial Textiles MATERIALS SCIENCE, TEXTILES-
CiteScore
5.30
自引率
18.80%
发文量
165
审稿时长
2.3 months
期刊介绍: The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.
期刊最新文献
Influence of honeycomb structures on fluids transmission and heat retention properties; An initiative towards stretchable weaves Experimental study on protective performance of ACF sandwich composites with different configurations in high-velocity impact Comprehensive study of the off-axis mechanical behaviors of a Polytetrafluoroethylene‐ coated fabric after 23 Years of service at Shanghai stadium Transformation of zinc acetate into ZnO nanofibers for enhanced NOx gas sensing: Cost-effective strategies and additive-free optimization Multifunctional sandwich materials with ROTIS structure for improved thermal and electrical properties in construction application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1