Towards predicting immersion in surround sound music reproduction from sound field features

IF 1 3区 物理与天体物理 Q4 ACOUSTICS Acta Acustica Pub Date : 2023-01-01 DOI:10.1051/aacus/2023040
Roman Kiyan, Jakob Bergner, Stephan Preihs, Yves Wycisk, Daphne Schössow, Kilian Sander, Jürgen Peissig, Reinhard Kopiez
{"title":"Towards predicting immersion in surround sound music reproduction from sound field features","authors":"Roman Kiyan, Jakob Bergner, Stephan Preihs, Yves Wycisk, Daphne Schössow, Kilian Sander, Jürgen Peissig, Reinhard Kopiez","doi":"10.1051/aacus/2023040","DOIUrl":null,"url":null,"abstract":"When evaluating surround sound loudspeaker reproduction, perceptual effects are commonly analyzed in relationship to different loudspeaker configurations. The presented work contributes to this by modeling perceptual effects based on acoustic properties of various reproduction formats. A model of immersion in music listening is derived from the results of an experimental study analyzing the psychological construct of immersive music experience. The proposed approach is evaluated with respect to the relationship between immersion ratings and sound field features obtained from re-recordings of the stimuli using a spherical microphone array at the listening position. Spatial sound field parameters such as inter-aural cross-correlation (IACC), diffuseness and directivity are found to be of particular relevance. Further, immersion is observed to reach a point of saturation with greater numbers of loudspeakers, which is confirmed to be predictable from the physical properties of the sound field. Although effects related to participants and musical pieces outweigh the impact of sound field features, the proposed approach is found to be suitable for predicting population-average ratings, i.e. immersion experienced by an average listener for unknown content. The proposed method could complement existing research on multichannel loudspeaker reproduction by establishing a more generalizable framework independent of particular speaker setups.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"26 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/aacus/2023040","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

When evaluating surround sound loudspeaker reproduction, perceptual effects are commonly analyzed in relationship to different loudspeaker configurations. The presented work contributes to this by modeling perceptual effects based on acoustic properties of various reproduction formats. A model of immersion in music listening is derived from the results of an experimental study analyzing the psychological construct of immersive music experience. The proposed approach is evaluated with respect to the relationship between immersion ratings and sound field features obtained from re-recordings of the stimuli using a spherical microphone array at the listening position. Spatial sound field parameters such as inter-aural cross-correlation (IACC), diffuseness and directivity are found to be of particular relevance. Further, immersion is observed to reach a point of saturation with greater numbers of loudspeakers, which is confirmed to be predictable from the physical properties of the sound field. Although effects related to participants and musical pieces outweigh the impact of sound field features, the proposed approach is found to be suitable for predicting population-average ratings, i.e. immersion experienced by an average listener for unknown content. The proposed method could complement existing research on multichannel loudspeaker reproduction by establishing a more generalizable framework independent of particular speaker setups.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从声场特征预测环绕声音乐再现的沉浸感
在评估环绕声扬声器再现时,通常会分析不同扬声器配置的感知效果。提出的工作有助于这一点,建模基于声学特性的各种复制格式的感知效应。通过对沉浸式音乐体验心理结构的实验研究,建立了沉浸式音乐聆听模型。根据浸入等级和声场特征之间的关系,对所提出的方法进行了评估,这些特征是通过在聆听位置使用球形麦克风阵列重新记录刺激而获得的。空间声场参数,如耳间相互关联(IACC),扩散和指向性被发现是特别相关的。此外,我们观察到,当扬声器数量更多时,浸入会达到饱和点,这被证实是可以从声场的物理性质来预测的。尽管与参与者和音乐作品相关的影响大于声场特征的影响,但所提出的方法被发现适用于预测人口平均评级,即普通听众对未知内容的沉浸感。该方法可以通过建立一个独立于特定扬声器设置的更通用的框架来补充现有的多声道扬声器再现研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Acustica
Acta Acustica ACOUSTICS-
CiteScore
2.80
自引率
21.40%
发文量
0
审稿时长
12 weeks
期刊介绍: Acta Acustica, the Journal of the European Acoustics Association (EAA). After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges. Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.
期刊最新文献
Auralization based on multi-perspective ambisonic room impulse responses Amplitude-dependent modal coefficients accounting for localized nonlinear losses in a time-domain integration of woodwind model A direct-hybrid CFD/CAA method based on lattice Boltzmann and acoustic perturbation equations Acta Acustica: State of art and achievements after 3 years Impact of wearing a head-mounted display on localization accuracy of real sound sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1