Cardiac arrhythmias are serious myocardial electrical disturbances that affect the rate and rhythm of heartbeats. Despite the rapidly accumulating data about the pathophysiology and the treatment, new insights are required to improve the overall clinical outcome of patients with cardiac arrhythmias. Three major arrhythmogenic processes can contribute to the pathogenesis of cardiac arrhythmias; 1) enhanced automaticity, 2) afterdepolarization-triggered activity and 3) reentry circuits. The mathematical model of the quantum tunneling of ions is used to investigate these mechanisms from a quantum mechanical perspective. The mathematical model focuses on applying the principle of quantum tunneling to sodium and potassium ions. This implies that these ions have a non-zero probability of passing through the gate, which has an energy that is higher than the kinetic energy of ions. Our mathematical findings indicate that, under pathological conditions, which affect ion channels, the quantum tunneling of sodium and potassium ions is augmented. This augmentation creates a state of hyperexcitability that can explain the enhanced automaticity, after depolarizations that are associated with triggered activity and a reentry circuit. Our mathematical findings stipulate that the augmented and thermally assisted quantum tunneling of sodium and potassium ions can depolarize the membrane potential and trigger spontaneous action potentials, which may explain the automaticity and afterdepolarization. Furthermore, the quantum tunneling of potassium ions during an action potential can provide a new insight regarding the formation of a reentry circuit. Introducing these quantum mechanical aspects may improve our understanding of the pathophysiological mechanisms of cardiac arrhythmias and, thus, contribute to finding more effective anti-arrhythmic drugs.