Agricultural Commodity Price Prediction using Long Short-Term Memory (LSTM) based Neural Networks

Ronit Jaiswal, Girish K. Jha, Kapil Choudhary, Rajeev Ranjan Kumar
{"title":"Agricultural Commodity Price Prediction using Long Short-Term Memory (LSTM) based Neural Networks","authors":"Ronit Jaiswal, Girish K. Jha, Kapil Choudhary, Rajeev Ranjan Kumar","doi":"10.18805/bkap613","DOIUrl":null,"url":null,"abstract":"Background: Agricultural price forecasting is one of the research hotspots in time series forecasting due to its unique characteristics. In this paper, we develop a standard long short-term memory (LSTM) for accurately predicting a nonstationary and nonlinear agricultural price series. Methods: An LSTM model effectively analyses and captures short-term and long-term temporal patterns of a complex time series due to its recurrent neural architecture and the memory function used in the hidden nodes. Result: The empirical results using the international monthly price series of maize demonstrate the superiority of the developed LSTM model over other models in terms of various forecasting evaluation criteria. Overall, LSTM model shows great potential for improving the accuracy and reliability of agricultural price predictions, benefiting farmers, traders, and policymakers in making informed decisions.","PeriodicalId":8784,"journal":{"name":"Bhartiya Krishi Anusandhan Patrika","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bhartiya Krishi Anusandhan Patrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18805/bkap613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Agricultural price forecasting is one of the research hotspots in time series forecasting due to its unique characteristics. In this paper, we develop a standard long short-term memory (LSTM) for accurately predicting a nonstationary and nonlinear agricultural price series. Methods: An LSTM model effectively analyses and captures short-term and long-term temporal patterns of a complex time series due to its recurrent neural architecture and the memory function used in the hidden nodes. Result: The empirical results using the international monthly price series of maize demonstrate the superiority of the developed LSTM model over other models in terms of various forecasting evaluation criteria. Overall, LSTM model shows great potential for improving the accuracy and reliability of agricultural price predictions, benefiting farmers, traders, and policymakers in making informed decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM的神经网络预测农产品价格
背景:农产品价格预测以其独特的特点成为时间序列预测的研究热点之一。在本文中,我们开发了一个标准长短期记忆(LSTM)来准确预测非平稳和非线性的农产品价格序列。方法:LSTM模型利用其递归神经结构和隐藏节点的记忆功能,有效地分析和捕获复杂时间序列的短期和长期时间模式。结果:利用玉米国际月度价格序列的实证结果表明,所建立的LSTM模型在各项预测评价指标上都优于其他模型。总体而言,LSTM模型在提高农产品价格预测的准确性和可靠性方面显示出巨大的潜力,有利于农民、贸易商和政策制定者做出明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Fermented Cacao Beans using Aspergillus oryzae Isolated from Pea Coffee Leaves Reevaluating the Rythu Bandhu Scheme: Toward Sustainable and Inclusive Agriculture in Telangana: A Review Correlation Studies of Morpho-physiological Characters with Seed Yield in Rapeseed (Brassica rapa var. Toria) Weed Competition and Performance of Sorghum and Groundnut Intercrop as Influenced by Row Orientation and Arrangement On Construction of Doubly Nested Partially Balanced Incomplete Block Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1