Assessing the Accuracy of Land Use Classification Using Multi-spectral Camera From LAPAN-A3, Landsat-8 and Sentinel-2 Satellite: A Case Study in Probolinggo-East Java

Ega Asti Anggari, Agus Herawan, Patria Rachman Hakim, Agung Wahyudiono, Sartika Salaswati, Elvira Rachim, Zylshal Zylshal
{"title":"Assessing the Accuracy of Land Use Classification Using Multi-spectral Camera From LAPAN-A3, Landsat-8 and Sentinel-2 Satellite: A Case Study in Probolinggo-East Java","authors":"Ega Asti Anggari, Agus Herawan, Patria Rachman Hakim, Agung Wahyudiono, Sartika Salaswati, Elvira Rachim, Zylshal Zylshal","doi":"10.18517/ijaseit.13.5.18570","DOIUrl":null,"url":null,"abstract":"The LAPAN-A3 is the third microsatellite generation developed by the Research Center for Satellite Technology. The satellite can be used for land classification, agriculture monitoring, drought monitoring, and land use change. This study aims to classify land use and land cover in the research area. The main image used is LAPAN-A3; the compared images are Landsat-8 and Sentinel-2. Three images were taken on the same day and selected on cloud-free terms. The classification process starts with determining the region of interest (ROI) and the class. The classification is divided into six classes: water, forests, rice fields, settlements, open land, and coastal areas. The classification technique uses supervised learning with the maximum likelihood method. This study used Landsat 8 and Sentinel-2 data to compare the results obtained from LAPAN-A3. The accuracy test results for the LAPAN-A3 and Landsat-8 are 84.7042% and 0.783, respectively. While the accuracy test of LAPAN-A3 and Sentinel-2 is 72.2313%, the kappa value is 0.6394. The classification of two comparisons is quite accurate, with an accuracy of more than 70%. The LA3 classification successfully identifies water and coastal areas. The producer and accuracy is substantiated by comparing the results with both Landsat-8 and Sentinel-2 satellite data, which exhibit an accuracy rate exceeding 85%. Finally, LAPAN-A3 has great potential for classifying land use and land cover when compared to Landsat 8 and Sentinel-2 images, but future research should increase the number of datasets and vary the research area to improve the results.","PeriodicalId":14471,"journal":{"name":"International Journal on Advanced Science, Engineering and Information Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Advanced Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18517/ijaseit.13.5.18570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The LAPAN-A3 is the third microsatellite generation developed by the Research Center for Satellite Technology. The satellite can be used for land classification, agriculture monitoring, drought monitoring, and land use change. This study aims to classify land use and land cover in the research area. The main image used is LAPAN-A3; the compared images are Landsat-8 and Sentinel-2. Three images were taken on the same day and selected on cloud-free terms. The classification process starts with determining the region of interest (ROI) and the class. The classification is divided into six classes: water, forests, rice fields, settlements, open land, and coastal areas. The classification technique uses supervised learning with the maximum likelihood method. This study used Landsat 8 and Sentinel-2 data to compare the results obtained from LAPAN-A3. The accuracy test results for the LAPAN-A3 and Landsat-8 are 84.7042% and 0.783, respectively. While the accuracy test of LAPAN-A3 and Sentinel-2 is 72.2313%, the kappa value is 0.6394. The classification of two comparisons is quite accurate, with an accuracy of more than 70%. The LA3 classification successfully identifies water and coastal areas. The producer and accuracy is substantiated by comparing the results with both Landsat-8 and Sentinel-2 satellite data, which exhibit an accuracy rate exceeding 85%. Finally, LAPAN-A3 has great potential for classifying land use and land cover when compared to Landsat 8 and Sentinel-2 images, but future research should increase the number of datasets and vary the research area to improve the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LAPAN-A3、Landsat-8和Sentinel-2卫星多光谱相机的土地利用分类精度评估——以Probolinggo-East爪哇为例
LAPAN-A3是由卫星技术研究中心开发的第三代微型卫星。该卫星可用于土地分类、农业监测、干旱监测和土地利用变化。本研究旨在对研究区土地利用和土地覆盖进行分类。使用的主要图像是LAPAN-A3;比较的图像是Landsat-8和Sentinel-2。三张图片是在同一天拍摄的,并在无云条件下选择。分类过程从确定感兴趣的区域(ROI)和类开始。该分类分为6类:水域、森林、稻田、定居地、开阔地和沿海地区。分类技术采用最大似然法的监督学习。本研究使用Landsat 8和Sentinel-2数据对LAPAN-A3获得的结果进行比较。LAPAN-A3和Landsat-8卫星的精度测试结果分别为84.7042%和0.783。而LAPAN-A3和Sentinel-2的精度检验值为72.2313%,kappa值为0.6394。两种比较的分类相当准确,准确率在70%以上。LA3分类成功地识别了水域和沿海地区。通过与Landsat-8和Sentinel-2卫星数据的比较,证实了该方法的有效性和准确性,其准确率均超过85%。最后,与Landsat 8和Sentinel-2图像相比,LAPAN-A3在土地利用和土地覆盖分类方面具有很大的潜力,但未来的研究应增加数据集的数量,改变研究区域,以改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal on Advanced Science, Engineering and Information Technology
International Journal on Advanced Science, Engineering and Information Technology Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.40
自引率
0.00%
发文量
272
期刊介绍: International Journal on Advanced Science, Engineering and Information Technology (IJASEIT) is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of science, engineering and information technology. The journal publishes state-of-art papers in fundamental theory, experiments and simulation, as well as applications, with a systematic proposed method, sufficient review on previous works, expanded discussion and concise conclusion. As our commitment to the advancement of science and technology, the IJASEIT follows the open access policy that allows the published articles freely available online without any subscription. The journal scopes include (but not limited to) the followings: -Science: Bioscience & Biotechnology. Chemistry & Food Technology, Environmental, Health Science, Mathematics & Statistics, Applied Physics -Engineering: Architecture, Chemical & Process, Civil & structural, Electrical, Electronic & Systems, Geological & Mining Engineering, Mechanical & Materials -Information Science & Technology: Artificial Intelligence, Computer Science, E-Learning & Multimedia, Information System, Internet & Mobile Computing
期刊最新文献
Medical Record Document Search with TF-IDF and Vector Space Model (VSM) Aesthetic Plastic Surgery Issues During the COVID-19 Period Using Topic Modeling Revolutionizing Echocardiography: A Comparative Study of Advanced AI Models for Precise Left Ventricular Segmentation The Mixed MEWMA and MCUSUM Control Chart Design of Efficiency Series Data of Production Quality Process Monitoring A Comprehensive Review of Machine Learning Approaches for Detecting Malicious Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1