{"title":"Revolutionizing Echocardiography: A Comparative Study of Advanced AI Models for Precise Left Ventricular Segmentation","authors":"Dong Ok Kim, MinSu Chae, Hwamin Lee","doi":"10.18517/ijaseit.14.3.18073","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases, a leading cause of global mortality, underscore the urgency for refined diagnostic techniques. Among these, cardiomyopathies characterized by abnormal heart wall thickening present a formidable challenge, exacerbated by aging populations and the side effects of chemotherapy. Traditional echocardiogram analysis, demanding considerable time and expertise, now faces overwhelming pressure due to escalating demands for cardiac care. This study addresses these challenges by harnessing the potential of Convolutional Neural Networks, specifically YOLOv8, U-Net, and Attention U-Net, leveraging the EchoNet-Dynamic dataset from Stanford University Hospital to segment echocardiographic images. Our investigation aimed to optimize and compare these models for segmenting the left ventricle in echocardiography images, a crucial step for quantifying key cardiac parameters. We demonstrate the superiority of U-Net and Attention U-Net over YOLOv8, with Attention U-Net achieving the highest Dice Coefficient Score due to its focus on relevant features via attention mechanisms. This finding highlights the importance of model specificity in medical image segmentation and points to attention mechanisms. The integration of AI in echocardiography represents a pivotal shift toward precision medicine, improving diagnostic accuracy and operational efficiency. Our results advocate for the continued development and application of AI-driven models, underscoring their potential to transform cardiovascular diagnostics through enhanced precision and multimodal data integration. This study validates the effectiveness of state-of-the-art AI models in cardiac function assessment and paves the way for their implementation in clinical settings, thereby contributing significantly to the advancement of cardiac healthcare delivery.","PeriodicalId":14471,"journal":{"name":"International Journal on Advanced Science, Engineering and Information Technology","volume":"48 s15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Advanced Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18517/ijaseit.14.3.18073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases, a leading cause of global mortality, underscore the urgency for refined diagnostic techniques. Among these, cardiomyopathies characterized by abnormal heart wall thickening present a formidable challenge, exacerbated by aging populations and the side effects of chemotherapy. Traditional echocardiogram analysis, demanding considerable time and expertise, now faces overwhelming pressure due to escalating demands for cardiac care. This study addresses these challenges by harnessing the potential of Convolutional Neural Networks, specifically YOLOv8, U-Net, and Attention U-Net, leveraging the EchoNet-Dynamic dataset from Stanford University Hospital to segment echocardiographic images. Our investigation aimed to optimize and compare these models for segmenting the left ventricle in echocardiography images, a crucial step for quantifying key cardiac parameters. We demonstrate the superiority of U-Net and Attention U-Net over YOLOv8, with Attention U-Net achieving the highest Dice Coefficient Score due to its focus on relevant features via attention mechanisms. This finding highlights the importance of model specificity in medical image segmentation and points to attention mechanisms. The integration of AI in echocardiography represents a pivotal shift toward precision medicine, improving diagnostic accuracy and operational efficiency. Our results advocate for the continued development and application of AI-driven models, underscoring their potential to transform cardiovascular diagnostics through enhanced precision and multimodal data integration. This study validates the effectiveness of state-of-the-art AI models in cardiac function assessment and paves the way for their implementation in clinical settings, thereby contributing significantly to the advancement of cardiac healthcare delivery.
期刊介绍:
International Journal on Advanced Science, Engineering and Information Technology (IJASEIT) is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of science, engineering and information technology. The journal publishes state-of-art papers in fundamental theory, experiments and simulation, as well as applications, with a systematic proposed method, sufficient review on previous works, expanded discussion and concise conclusion. As our commitment to the advancement of science and technology, the IJASEIT follows the open access policy that allows the published articles freely available online without any subscription. The journal scopes include (but not limited to) the followings: -Science: Bioscience & Biotechnology. Chemistry & Food Technology, Environmental, Health Science, Mathematics & Statistics, Applied Physics -Engineering: Architecture, Chemical & Process, Civil & structural, Electrical, Electronic & Systems, Geological & Mining Engineering, Mechanical & Materials -Information Science & Technology: Artificial Intelligence, Computer Science, E-Learning & Multimedia, Information System, Internet & Mobile Computing