An all-biomaterials-based aqueous binder based on adsorption redox-mediated synergism for advanced lithium–sulfur batteries

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2024-06-01 DOI:10.1016/j.esci.2023.100203
Wanyuan Jiang , Tianpeng Zhang , Runyue Mao , Zihui Song , Siyang Liu , Ce Song , Xigao Jian , Fangyuan Hu
{"title":"An all-biomaterials-based aqueous binder based on adsorption redox-mediated synergism for advanced lithium–sulfur batteries","authors":"Wanyuan Jiang ,&nbsp;Tianpeng Zhang ,&nbsp;Runyue Mao ,&nbsp;Zihui Song ,&nbsp;Siyang Liu ,&nbsp;Ce Song ,&nbsp;Xigao Jian ,&nbsp;Fangyuan Hu","doi":"10.1016/j.esci.2023.100203","DOIUrl":null,"url":null,"abstract":"<div><p>The complex multistep electrochemical reactions of lithium polysulfides and the solid–liquid–solid phase transformation involved in the S<sub>8</sub> to Li<sub>2</sub>S reactions lead to slow redox kinetics in lithium–sulfur batteries (Li–S batteries). However, some targeted researches have proposed strategies requiring the introduction of significant additional inactive components, which can seriously affect the energy density. Whereas polymer binders, proven to be effective in suppressing shuttle effects and constraining electrode volume expansion, also have promising potential in enhancing Li–S batteries redox kinetics. Herein, a novel aqueous polymer binder is prepared by convenient amidation reaction of fully biomaterials, utilizing its inherent rich amide groups for chemisorption and redox mediating ability of thiol groups to achieve adsorption redox-mediated synergism for efficient conversion of polysulfides. Li–S batteries based on <em>N</em>-Acetyl-<em>L</em>-Cysteine-Chitosan (NACCTS) binder exhibit high initial discharge specific capacity (1260.1 ​mAh ​g<sup>−1</sup> at 0.2 ​C) and excellent cycling performance over 400 cycles (capacity decay rate of 0.018% per cycle). In addition, the batteries exhibit great areal capacity and stable capacity retention of 83.6% over 80 cycles even under high sulfur loading of 8.4 ​mg ​cm<sup>−2</sup>. This work offers a novel perspective on the redox-mediated functional design and provides an environmentally friendly biomaterials-based aqueous binder for practical Li–S battery.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100203"},"PeriodicalIF":42.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001489/pdfft?md5=bbfd5451dcd1dbd5347d9556e42cfd14&pid=1-s2.0-S2667141723001489-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The complex multistep electrochemical reactions of lithium polysulfides and the solid–liquid–solid phase transformation involved in the S8 to Li2S reactions lead to slow redox kinetics in lithium–sulfur batteries (Li–S batteries). However, some targeted researches have proposed strategies requiring the introduction of significant additional inactive components, which can seriously affect the energy density. Whereas polymer binders, proven to be effective in suppressing shuttle effects and constraining electrode volume expansion, also have promising potential in enhancing Li–S batteries redox kinetics. Herein, a novel aqueous polymer binder is prepared by convenient amidation reaction of fully biomaterials, utilizing its inherent rich amide groups for chemisorption and redox mediating ability of thiol groups to achieve adsorption redox-mediated synergism for efficient conversion of polysulfides. Li–S batteries based on N-Acetyl-L-Cysteine-Chitosan (NACCTS) binder exhibit high initial discharge specific capacity (1260.1 ​mAh ​g−1 at 0.2 ​C) and excellent cycling performance over 400 cycles (capacity decay rate of 0.018% per cycle). In addition, the batteries exhibit great areal capacity and stable capacity retention of 83.6% over 80 cycles even under high sulfur loading of 8.4 ​mg ​cm−2. This work offers a novel perspective on the redox-mediated functional design and provides an environmentally friendly biomaterials-based aqueous binder for practical Li–S battery.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于吸附氧化还原协同作用的全生物材料水性粘合剂,用于先进的锂硫电池
多硫化锂复杂的多步电化学反应以及 S8 到 Li2S 反应中涉及的固-液-固相转变导致锂硫电池(Li-S 电池)的氧化还原动力学缓慢。然而,一些有针对性的研究提出的策略需要引入大量额外的非活性成分,这会严重影响能量密度。而聚合物粘合剂在抑制穿梭效应和限制电极体积膨胀方面被证明是有效的,在增强锂硫电池氧化还原动力学方面也具有广阔的前景。本文通过对完全生物材料进行便捷的酰胺化反应制备了一种新型水性聚合物粘合剂,利用其固有的丰富酰胺基团的化学吸附能力和硫醇基团的氧化还原介导能力,实现了吸附氧化还原介导的协同作用,从而实现多硫化物的高效转化。基于 N-乙酰基-L-半胱氨酸-壳聚糖(NACCTS)粘合剂的锂-S 电池表现出较高的初始放电比容量(0.2 C 时为 1260.1 mAh g-1)和超过 400 次循环的优异循环性能(每次循环的容量衰减率为 0.018%)。此外,即使在 8.4 毫克厘米-2 的高硫负荷下,这种电池也能表现出很高的平均容量,并在 80 次循环中保持 83.6% 的稳定容量。这项研究为氧化还原介导的功能设计提供了一个新的视角,并为实用锂-S 电池提供了一种基于生物材料的环境友好型水性粘合剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1