Development of a highly stable nickel-foam-based boron monosulfide–graphene electrocatalyst with a high current density for the oxygen evolution reaction
{"title":"Development of a highly stable nickel-foam-based boron monosulfide–graphene electrocatalyst with a high current density for the oxygen evolution reaction","authors":"Linghui Li, Norinobu Watanabe, Cheng Jiang, Akiyasu Yamamoto, Takeshi Fujita, Masashi Miyakawa, Takashi Taniguchi, Hideo Hosono, Takahiro Kondo","doi":"10.1080/14686996.2023.2277681","DOIUrl":null,"url":null,"abstract":"As an important part of water splitting, the oxygen evolution reaction (OER) requires efficient, low-cost, and stable catalysts to overcome its sluggish kinetic barrier. In this study, based on previously reported OER catalyst materials of boron monosulfide mixed with graphene (r-BS+G), nickel foam (NF) is introduced as a supporting material for an r-BS+G electrocatalyst. The resulting r-BS+G-NF exhibits a very low overpotential at 10 (245 mV), 100 (308 mV), and 500 (405 mV) mA cm–2, with a low Tafel slope (56 mV dec–1). In addition, r-BS+G-NF exhibits high durability and can maintain high activity for more than 100 h at 100 mA cm–2. This is in sharp contrast to the catalyst without graphene (r-BS+NF), which shows lower durability. The results suggest that the unique morphology of the NF provides a large electrochemically active area and exposes more active sites on the surface of the prepared electrocatalyst, while the flexible graphene sheets play an important role as a support for effectively combining r-BS and NF. Consequently, the self-supporting structure can improve the OER performance as well as stability. Therefore, this study provides a promising strategy for use as an efficient and stable OER catalyst at high current densities.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":" 17","pages":"0"},"PeriodicalIF":7.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14686996.2023.2277681","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As an important part of water splitting, the oxygen evolution reaction (OER) requires efficient, low-cost, and stable catalysts to overcome its sluggish kinetic barrier. In this study, based on previously reported OER catalyst materials of boron monosulfide mixed with graphene (r-BS+G), nickel foam (NF) is introduced as a supporting material for an r-BS+G electrocatalyst. The resulting r-BS+G-NF exhibits a very low overpotential at 10 (245 mV), 100 (308 mV), and 500 (405 mV) mA cm–2, with a low Tafel slope (56 mV dec–1). In addition, r-BS+G-NF exhibits high durability and can maintain high activity for more than 100 h at 100 mA cm–2. This is in sharp contrast to the catalyst without graphene (r-BS+NF), which shows lower durability. The results suggest that the unique morphology of the NF provides a large electrochemically active area and exposes more active sites on the surface of the prepared electrocatalyst, while the flexible graphene sheets play an important role as a support for effectively combining r-BS and NF. Consequently, the self-supporting structure can improve the OER performance as well as stability. Therefore, this study provides a promising strategy for use as an efficient and stable OER catalyst at high current densities.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.