Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Polymer Materials Pub Date : 2024-12-31 DOI:10.1080/14686996.2024.2402685
Ling Gao, Haonan Liu, Xiaobin Liang, Makiko Ito, Ken Nakajima
{"title":"Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy","authors":"Ling Gao, Haonan Liu, Xiaobin Liang, Makiko Ito, Ken Nakajima","doi":"10.1080/14686996.2024.2402685","DOIUrl":null,"url":null,"abstract":"Styrene-based ABA-type triblock copolymers and their blends are widely investigated thermoplastic elastomers (TPEs). The design of tough TPE materials with high strength and resilience requires further clarification of the relationship between microstructure and macroscopic properties of stretched samples. Here, we applied atomic force microscopy (AFM)-based quantitative nanomechanical mapping to study the deformation behavior of poly(styrene-<i>b</i>-isoprene-<i>b</i>-styrene) blends under tension. The results indicated that the glassy polystyrene (PS) domains deformed and inhomogeneous stress distributions developed in the initial stretching stage. At 200% strain, the glassy PS domains started to crack. The change in the peak value in the JKR Young’s modulus diagram during stretching was consistent with the stress – strain curve. Analysis of the particles before and after stretching suggested that the glassy domains separated and reorganized during stretching.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"17 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2402685","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Styrene-based ABA-type triblock copolymers and their blends are widely investigated thermoplastic elastomers (TPEs). The design of tough TPE materials with high strength and resilience requires further clarification of the relationship between microstructure and macroscopic properties of stretched samples. Here, we applied atomic force microscopy (AFM)-based quantitative nanomechanical mapping to study the deformation behavior of poly(styrene-b-isoprene-b-styrene) blends under tension. The results indicated that the glassy polystyrene (PS) domains deformed and inhomogeneous stress distributions developed in the initial stretching stage. At 200% strain, the glassy PS domains started to crack. The change in the peak value in the JKR Young’s modulus diagram during stretching was consistent with the stress – strain curve. Analysis of the particles before and after stretching suggested that the glassy domains separated and reorganized during stretching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用原子力显微镜跟踪 SIS 热塑性弹性体在拉力作用下的形态和应力分布演变情况
苯乙烯基 ABA 型三嵌段共聚物及其共混物是被广泛研究的热塑性弹性体(TPE)。要设计出具有高强度和回弹性的坚韧 TPE 材料,就必须进一步阐明拉伸样品的微观结构与宏观特性之间的关系。在此,我们应用基于原子力显微镜 (AFM) 的定量纳米力学图谱研究了聚苯乙烯-异戊二烯-苯乙烯共混物在拉伸条件下的变形行为。结果表明,在拉伸初始阶段,玻璃态聚苯乙烯(PS)畴发生变形,并形成不均匀的应力分布。当应变达到 200% 时,玻璃态 PS 结构域开始出现裂纹。拉伸过程中 JKR 杨氏模量图的峰值变化与应力-应变曲线一致。对拉伸前后颗粒的分析表明,玻璃态结构域在拉伸过程中发生了分离和重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
期刊最新文献
Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor for white LEDs Multicrystalline informatics: a methodology to advance materials science by unraveling complex phenomena A comprehensive data network for data-driven study of battery materials A new competitive edge: crafting a service climate that facilitates optimal human–AI collaboration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1