Moving from Raman Spectroscopy Lab towards Analytical Applications: A Review of Interlaboratory Studies

Q3 Physics and Astronomy Instruments Pub Date : 2023-09-25 DOI:10.3390/instruments7040030
Elena-Andreea Rusu, Monica Baia
{"title":"Moving from Raman Spectroscopy Lab towards Analytical Applications: A Review of Interlaboratory Studies","authors":"Elena-Andreea Rusu, Monica Baia","doi":"10.3390/instruments7040030","DOIUrl":null,"url":null,"abstract":"Is Raman spectroscopy applicable for analytical purposes? Although Raman spectroscopy is a commonly used technique for analyzing sample characteristics and has numerous benefits, it still has several significant limitations that hinder the current tendency to produce the same results regardless of location, equipment, or operator. Overcoming these drawbacks may help to further the development of personalized medicine, diagnosis and treatment, the development of work protocols, and the pursuit of consistent and repeatable performance across all fields. Interlaboratory studies are currently the best way to do this. In this study, we reviewed the interlaboratory studies on Raman spectroscopy conducted to highlight the importance of moving to quantitative analysis in controlled environments. The advantages of Raman spectroscopy, including its high molecular specificity, short spectrum acquisition time, and excellent component identification capabilities, were clearly stated in all experiments. The Raman spectroscopy lab is taking small steps toward analytical applications by figuring out how to accurately predict concentrations in the relevant range of concentrations, developing and verifying the technology, and producing homogenous samples for those investigations.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments7040030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Is Raman spectroscopy applicable for analytical purposes? Although Raman spectroscopy is a commonly used technique for analyzing sample characteristics and has numerous benefits, it still has several significant limitations that hinder the current tendency to produce the same results regardless of location, equipment, or operator. Overcoming these drawbacks may help to further the development of personalized medicine, diagnosis and treatment, the development of work protocols, and the pursuit of consistent and repeatable performance across all fields. Interlaboratory studies are currently the best way to do this. In this study, we reviewed the interlaboratory studies on Raman spectroscopy conducted to highlight the importance of moving to quantitative analysis in controlled environments. The advantages of Raman spectroscopy, including its high molecular specificity, short spectrum acquisition time, and excellent component identification capabilities, were clearly stated in all experiments. The Raman spectroscopy lab is taking small steps toward analytical applications by figuring out how to accurately predict concentrations in the relevant range of concentrations, developing and verifying the technology, and producing homogenous samples for those investigations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从拉曼光谱实验室走向分析应用:实验室间研究综述
拉曼光谱是否适用于分析?尽管拉曼光谱是一种常用的分析样品特性的技术,并且有许多优点,但它仍然有几个显著的局限性,阻碍了当前的趋势,无论地点、设备或操作人员如何,都无法产生相同的结果。克服这些缺点可能有助于进一步发展个性化医疗、诊断和治疗,制定工作方案,并在所有领域追求一致和可重复的表现。实验室间研究是目前最好的方法。在本研究中,我们回顾了拉曼光谱的实验室间研究,以强调在受控环境中进行定量分析的重要性。拉曼光谱具有分子特异性高、光谱采集时间短、组分鉴定能力强等优点,在所有实验中都得到了明确体现。拉曼光谱实验室正在研究如何准确预测相关浓度范围内的浓度,开发和验证该技术,并为这些研究生产同质样品,从而在分析应用方面迈出了一小步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Instruments
Instruments Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
0.00%
发文量
70
审稿时长
11 weeks
期刊最新文献
Red and Green Laser Powder Bed Fusion of Pure Copper in Combination with Chemical Post-Processing for RF Cavity Fabrication Improved Production of Novel Radioisotopes with Custom Energy Cyclone® Kiube High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence Microparticle Hybrid Target Simulation for keV X-ray Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1