{"title":"Recovery of Sparse Signals via Modified Hard Thresholding Pursuit Algorithms","authors":"Li-Ping Geng, Jin-Chuan Zhou, Zhong-Feng Sun, Jing-Yong Tang","doi":"10.1049/2023/9937696","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a modified version of the hard thresholding pursuit algorithm, called modified hard thresholding pursuit (MHTP), using a convex combination of the current and previous points. The convergence analysis, finite termination properties, and stability of the MHTP are established under the restricted isometry property of the measurement matrix. Simulations are performed in noiseless and noisy environments using synthetic data, in which the successful frequencies, average runtime, and phase transition of the MHTP are considered. Standard test images are also used to test the reconstruction capability of the MHTP in terms of the peak signal-to-noise ratio. Numerical results indicate that the MHTP is competitive with several mainstream thresholding and greedy algorithms, such as hard thresholding pursuit, compressive sampling matching pursuit, subspace pursuit, generalized orthogonal matching pursuit, and Newton-step-based hard thresholding pursuit, in terms of recovery capability and runtime.","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"40 2","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/9937696","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a modified version of the hard thresholding pursuit algorithm, called modified hard thresholding pursuit (MHTP), using a convex combination of the current and previous points. The convergence analysis, finite termination properties, and stability of the MHTP are established under the restricted isometry property of the measurement matrix. Simulations are performed in noiseless and noisy environments using synthetic data, in which the successful frequencies, average runtime, and phase transition of the MHTP are considered. Standard test images are also used to test the reconstruction capability of the MHTP in terms of the peak signal-to-noise ratio. Numerical results indicate that the MHTP is competitive with several mainstream thresholding and greedy algorithms, such as hard thresholding pursuit, compressive sampling matching pursuit, subspace pursuit, generalized orthogonal matching pursuit, and Newton-step-based hard thresholding pursuit, in terms of recovery capability and runtime.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf