A Bayesian approach to modeling topic-metadata relationships

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2023-11-03 DOI:10.1007/s10182-023-00485-9
Patrick Schulze, Simon Wiegrebe, Paul W. Thurner, Christian Heumann, Matthias Aßenmacher
{"title":"A Bayesian approach to modeling topic-metadata relationships","authors":"Patrick Schulze,&nbsp;Simon Wiegrebe,&nbsp;Paul W. Thurner,&nbsp;Christian Heumann,&nbsp;Matthias Aßenmacher","doi":"10.1007/s10182-023-00485-9","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of advanced topic modeling is not only to explore latent topical structures, but also to estimate relationships between the discovered topics and theoretically relevant metadata. Methods used to estimate such relationships must take into account that the topical structure is not directly observed, but instead being estimated itself in an unsupervised fashion, usually by common topic models. A frequently used procedure to achieve this is the <i>method of composition</i>, a Monte Carlo sampling technique performing multiple repeated linear regressions of sampled topic proportions on metadata covariates. In this paper, we propose two modifications of this approach: First, we substantially refine the existing implementation of the method of composition from the <span>R</span> package <span>stm</span> by replacing linear regression with the more appropriate Beta regression. Second, we provide a fundamental enhancement of the entire estimation framework by substituting the current blending of frequentist and Bayesian methods with a fully Bayesian approach. This allows for a more appropriate quantification of uncertainty. We illustrate our improved methodology by investigating relationships between Twitter posts by German parliamentarians and different metadata covariates related to their electoral districts, using the structural topic model to estimate topic proportions.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-023-00485-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-023-00485-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of advanced topic modeling is not only to explore latent topical structures, but also to estimate relationships between the discovered topics and theoretically relevant metadata. Methods used to estimate such relationships must take into account that the topical structure is not directly observed, but instead being estimated itself in an unsupervised fashion, usually by common topic models. A frequently used procedure to achieve this is the method of composition, a Monte Carlo sampling technique performing multiple repeated linear regressions of sampled topic proportions on metadata covariates. In this paper, we propose two modifications of this approach: First, we substantially refine the existing implementation of the method of composition from the R package stm by replacing linear regression with the more appropriate Beta regression. Second, we provide a fundamental enhancement of the entire estimation framework by substituting the current blending of frequentist and Bayesian methods with a fully Bayesian approach. This allows for a more appropriate quantification of uncertainty. We illustrate our improved methodology by investigating relationships between Twitter posts by German parliamentarians and different metadata covariates related to their electoral districts, using the structural topic model to estimate topic proportions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯方法为主题-元数据关系建模
高级主题建模的目的不仅在于探索潜在的主题结构,还在于估计所发现的主题与理论上相关的元数据之间的关系。用于估算这种关系的方法必须考虑到拓扑结构不是直接观察到的,而是以无监督的方式估算出来的,通常是通过普通的主题模型。为实现这一目的,经常使用的程序是构成法,这是一种蒙特卡罗抽样技术,对元数据协变量的抽样主题比例进行多次重复线性回归。在本文中,我们对这种方法提出了两点修改建议:首先,我们用更合适的 Beta 回归取代了线性回归,从而大大改进了 R 软件包 stm 中现有的组成方法实现。其次,我们从根本上改进了整个估计框架,用完全的贝叶斯方法取代了目前的频繁法和贝叶斯方法的混合方法。这样就能更恰当地量化不确定性。我们通过调查德国议员的 Twitter 帖子与其选区相关的不同元数据协变量之间的关系来说明我们改进后的方法,并使用结构主题模型来估计主题比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis A Finite-sample bias correction method for general linear model in the presence of differential measurement errors Classes of probability measures built on the properties of Benford’s law Wasserstein barycenter regression: application to the joint dynamics of regional GDP and life expectancy in Italy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1