Fanwei Su, Yunhua Wang, Yining Bai, Daozhong Sun, Ge Chen, Chunyong Ma, Yanmin Zhang, Wenzheng Jiang
{"title":"The Impact of Neutral Atmospheric Propagation Path on the Altimetry Performance of Interferometric Radar Altimeter","authors":"Fanwei Su, Yunhua Wang, Yining Bai, Daozhong Sun, Ge Chen, Chunyong Ma, Yanmin Zhang, Wenzheng Jiang","doi":"10.1175/jtech-d-22-0142.1","DOIUrl":null,"url":null,"abstract":"Abstract The interferometric radar altimeter (IRA) is an innovative remote sensing sensor that enables the observation of mesoscale and sub-mesoscale (meso-submesoscale) ocean dynamic phenomena. The neutral atmosphere introduces path delay and bending in signal propagation. In this study, three types of SSH errors caused by neutral atmosphere propagation path for IRA were identified: differential delay error (DDE), path delay error (PDE), and path bending error (PBE). Among them, DDE exhibits a proportionality to the negative zenith neutral delay (ZND) and demonstrates a significant increase with the incident angle; PDE is solely reliant on the ZND; PBE is like DDE in trend and magnitude resembling a ramp. Intriguingly, PBE exhibits insensitivity to variations in the neutral atmosphere, behaving more like a systematic error. Theoretically, PBE leads to an increase in the SSH error of about 1.2cm at far-range for SWOT. The ZND spectrum fitted from the Jason-3 zenith delay correction data is additionally utilized to simulate the spatial distribution of ZND anomaly within the SWOT observation swaths. Then, the impact of PDE anomaly (PDEA), PBE, and DDE anomaly (DDEA) on the observation performance of SWOT is also considered in conjunction with SSH data provided by Hycom. The findings indicate that both PDEA and PBE significantly reduce IRA's performance in oceanic phenomena, while the impact of DDEA can be disregarded. The PBE can distort the sea surface trend and increases the mean sea level within the range, requiring further attention.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":"43 2","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0142.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The interferometric radar altimeter (IRA) is an innovative remote sensing sensor that enables the observation of mesoscale and sub-mesoscale (meso-submesoscale) ocean dynamic phenomena. The neutral atmosphere introduces path delay and bending in signal propagation. In this study, three types of SSH errors caused by neutral atmosphere propagation path for IRA were identified: differential delay error (DDE), path delay error (PDE), and path bending error (PBE). Among them, DDE exhibits a proportionality to the negative zenith neutral delay (ZND) and demonstrates a significant increase with the incident angle; PDE is solely reliant on the ZND; PBE is like DDE in trend and magnitude resembling a ramp. Intriguingly, PBE exhibits insensitivity to variations in the neutral atmosphere, behaving more like a systematic error. Theoretically, PBE leads to an increase in the SSH error of about 1.2cm at far-range for SWOT. The ZND spectrum fitted from the Jason-3 zenith delay correction data is additionally utilized to simulate the spatial distribution of ZND anomaly within the SWOT observation swaths. Then, the impact of PDE anomaly (PDEA), PBE, and DDE anomaly (DDEA) on the observation performance of SWOT is also considered in conjunction with SSH data provided by Hycom. The findings indicate that both PDEA and PBE significantly reduce IRA's performance in oceanic phenomena, while the impact of DDEA can be disregarded. The PBE can distort the sea surface trend and increases the mean sea level within the range, requiring further attention.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.