Quantum Support Vector Machines for Aerodynamic Classification

IF 2.2 Q3 COMPUTER SCIENCE, CYBERNETICS International Journal of Intelligent Computing and Cybernetics Pub Date : 2023-11-03 DOI:10.34133/icomputing.0057
xijun yuan, ZiQiao chen
{"title":"Quantum Support Vector Machines for Aerodynamic Classification","authors":"xijun yuan, ZiQiao chen","doi":"10.34133/icomputing.0057","DOIUrl":null,"url":null,"abstract":"Aerodynamics plays an important role in aviation industry and aircraft design. Detecting and minimizing the phenomenon of flow separation from scattered pressure data on airfoil is critical for ensuring stable and efficient aviation. However, since it is challenging to understand the mechanics of flow field separation, the aerodynamic parameters are emphasized for the identification and control of flow separation. It has been investigated extensively using traditional algorithms and machine learning methods such as the support vector machine (SVM) models. Recently, a growing interest in quantum computing and its applications among wide research communities sheds light upon the use of quantum techniques to solve aerodynamic problems. In this paper, we apply qSVM, a quantum SVM algorithm based on the quantum annealing model, to identify whether there is flow separation, with their performance in comparison to the widely-used classical SVM. We show that our approach outperforms the classical SVM with an 11.1% increase of the accuracy, from 0.818 to 0.909, for this binary classification task. We further develop multi-class qSVMs based on one-against-all algorithm. We apply it to classify multiple types of the attack angles to the wings, where the advantage over the classical multi-class counterpart is maintained with an accuracy increased from 0.67 to 0.79, by 17.9%. Our work demonstrates a useful quantum technique for classifying flow separation scenarios, and may promote rich investigations for quantum computing applications in fluid dynamics.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"43 18","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/icomputing.0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 3

Abstract

Aerodynamics plays an important role in aviation industry and aircraft design. Detecting and minimizing the phenomenon of flow separation from scattered pressure data on airfoil is critical for ensuring stable and efficient aviation. However, since it is challenging to understand the mechanics of flow field separation, the aerodynamic parameters are emphasized for the identification and control of flow separation. It has been investigated extensively using traditional algorithms and machine learning methods such as the support vector machine (SVM) models. Recently, a growing interest in quantum computing and its applications among wide research communities sheds light upon the use of quantum techniques to solve aerodynamic problems. In this paper, we apply qSVM, a quantum SVM algorithm based on the quantum annealing model, to identify whether there is flow separation, with their performance in comparison to the widely-used classical SVM. We show that our approach outperforms the classical SVM with an 11.1% increase of the accuracy, from 0.818 to 0.909, for this binary classification task. We further develop multi-class qSVMs based on one-against-all algorithm. We apply it to classify multiple types of the attack angles to the wings, where the advantage over the classical multi-class counterpart is maintained with an accuracy increased from 0.67 to 0.79, by 17.9%. Our work demonstrates a useful quantum technique for classifying flow separation scenarios, and may promote rich investigations for quantum computing applications in fluid dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气动分类的量子支持向量机
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
4.70%
发文量
26
期刊最新文献
Six classes named entity recognition for mapping location of Indonesia natural disasters from twitter data Evaluation of predicted fault tolerance based on C5.0 decision tree algorithm in irrigation system of paddy fields Manifold embedded global and local discriminative features selection for single-shot multi-categories clothing recognition and retrieval Exploring the differentiated elderly service subsidies considering consumer word-of-mouth preferences TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1