Utilizing Homer Power Optimization Software for A Techno-Economic Feasibility, Study of a Sustainable Grid-Connected Design for Urban Electricity in, Khartoum
{"title":"Utilizing Homer Power Optimization Software for A Techno-Economic Feasibility, Study of a Sustainable Grid-Connected Design for Urban Electricity in, Khartoum","authors":"None Zeinab A. Elhassan","doi":"10.56801/mme988","DOIUrl":null,"url":null,"abstract":"HOMER (Hybrid Optimization of Multiple Electric Renewable) streamlines the design of distributed generation (DG) systems for a variety of grid-connected and off-grid applications. In Sudan, it is difficult to acquire an effective photovoltaic array for residential use due to a lack of energy consumption in power generation and access to technological, social, and environmental constraints. A model of a low-energy, solar-powered house that is suitable for Sudanese social and economic norms requires a high-quality architectural design. Method Using the HOMER software, the charge advantage analysis of a hybrid system was studied and assessed using the value for each kilowatt of grid-connected systems or utility grid. The simulation results have been presented as the most efficient and cost-effective method for achieving various home counts. At the current price, the hybrid system has a refund term of about fifty-four years. If turbine prices in Khartoum decline, the overall cost of energy will be reduced.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56801/mme988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
HOMER (Hybrid Optimization of Multiple Electric Renewable) streamlines the design of distributed generation (DG) systems for a variety of grid-connected and off-grid applications. In Sudan, it is difficult to acquire an effective photovoltaic array for residential use due to a lack of energy consumption in power generation and access to technological, social, and environmental constraints. A model of a low-energy, solar-powered house that is suitable for Sudanese social and economic norms requires a high-quality architectural design. Method Using the HOMER software, the charge advantage analysis of a hybrid system was studied and assessed using the value for each kilowatt of grid-connected systems or utility grid. The simulation results have been presented as the most efficient and cost-effective method for achieving various home counts. At the current price, the hybrid system has a refund term of about fifty-four years. If turbine prices in Khartoum decline, the overall cost of energy will be reduced.