{"title":"Recent Advancements in Typical Friedel–Crafts Alkylation Reactions Focused on Targeting Arene Nucleophiles","authors":"Chinmoy K. Hazra, Sanjay Singh","doi":"10.1055/s-0042-1751492","DOIUrl":null,"url":null,"abstract":"Abstract This review delves into recent advances and significant breakthroughs in the field of the catalytic Friedel–Crafts alkylation of targeted arenes or heteroarenes. Though a few earlier literatures are referenced, the main emphasis of this review focuses on the literature mainly published between 2015 and March 2023. 1 Introduction 2 History and Background 3 Alcohols as Alkylating Agents 4 Aldehydes and Ketones as Alkylating Agents 5 Alkyl Fluorides as Alkylating Agents 6 Epoxides as Alkylating Agents 7 Cyclopropanes as Alkylating Agents 8 Conclusion and Outlook","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"30 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis-Stuttgart","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1751492","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract This review delves into recent advances and significant breakthroughs in the field of the catalytic Friedel–Crafts alkylation of targeted arenes or heteroarenes. Though a few earlier literatures are referenced, the main emphasis of this review focuses on the literature mainly published between 2015 and March 2023. 1 Introduction 2 History and Background 3 Alcohols as Alkylating Agents 4 Aldehydes and Ketones as Alkylating Agents 5 Alkyl Fluorides as Alkylating Agents 6 Epoxides as Alkylating Agents 7 Cyclopropanes as Alkylating Agents 8 Conclusion and Outlook
期刊介绍:
SYNTHESIS is an international full-paper journal devoted to the advancement of the science of chemical synthesis. It covers all fields of organic chemistry involving synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines. SYNTHESIS provides dependable research results with detailed and reliable experimental procedures and full characterization of all important new products as well as scientific primary data.