Cooperative Control of Traffic Signals and Vehicle Trajectories

Anton Agafonov, Alexander Yumaganov
{"title":"Cooperative Control of Traffic Signals and Vehicle Trajectories","authors":"Anton Agafonov, Alexander Yumaganov","doi":"10.15622/ia.22.1.1","DOIUrl":null,"url":null,"abstract":"The transportation system is one of the most important parts of the country's economy. At the same time, the growth in road traffic has a significant negative impact on the economic performance of the industry. One of the ways to increase the efficiency of using the transportation infrastructure is to manage traffic flows, incl. by controlling traffic signals at signalized intersections. One of the trends in the development of intelligent transportation systems is the creation of vehicular ad hoc networks that allow the exchange of information between vehicles and infrastructure, as well as the development of autonomous vehicles. As a result, it becomes possible to formulate the problem of cooperative control of vehicle trajectories and traffic signals to increase the capacity of intersections and reduce fuel consumption and travel time. This paper presents a method for managing traffic flow at an intersection, which consists of the cooperative control of traffic signals and trajectories of connected/autonomous vehicles. The developed method combines an algorithm for the adaptive control of traffic signals based on a deterministic model for predicting the movement of vehicles and a two-stage algorithm for constructing the trajectory of vehicles. The objective optimization function used to construct the optimal trajectories takes into account fuel consumption, travel time on the road lane, and waiting time at the intersection. Experimental studies of the developed method were carried out in the microscopic traffic simulation package SUMO using three simulation scenarios, including two synthetic scenarios and a scenario in a real urban environment. The results of experimental studies confirm the effectiveness of the developed method in terms of fuel consumption, travel time, and waiting time in comparison with the adaptive traffic signal control algorithm.","PeriodicalId":491127,"journal":{"name":"Informatika i avtomatizaciâ","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatika i avtomatizaciâ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15622/ia.22.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The transportation system is one of the most important parts of the country's economy. At the same time, the growth in road traffic has a significant negative impact on the economic performance of the industry. One of the ways to increase the efficiency of using the transportation infrastructure is to manage traffic flows, incl. by controlling traffic signals at signalized intersections. One of the trends in the development of intelligent transportation systems is the creation of vehicular ad hoc networks that allow the exchange of information between vehicles and infrastructure, as well as the development of autonomous vehicles. As a result, it becomes possible to formulate the problem of cooperative control of vehicle trajectories and traffic signals to increase the capacity of intersections and reduce fuel consumption and travel time. This paper presents a method for managing traffic flow at an intersection, which consists of the cooperative control of traffic signals and trajectories of connected/autonomous vehicles. The developed method combines an algorithm for the adaptive control of traffic signals based on a deterministic model for predicting the movement of vehicles and a two-stage algorithm for constructing the trajectory of vehicles. The objective optimization function used to construct the optimal trajectories takes into account fuel consumption, travel time on the road lane, and waiting time at the intersection. Experimental studies of the developed method were carried out in the microscopic traffic simulation package SUMO using three simulation scenarios, including two synthetic scenarios and a scenario in a real urban environment. The results of experimental studies confirm the effectiveness of the developed method in terms of fuel consumption, travel time, and waiting time in comparison with the adaptive traffic signal control algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交通信号与车辆轨迹的协同控制
交通运输系统是国家经济最重要的组成部分之一。与此同时,道路交通的增长对行业的经济绩效产生了显著的负面影响。提高交通基础设施使用效率的方法之一是管理交通流量,包括控制信号交叉口的交通信号。智能交通系统发展的趋势之一是创建车辆特设网络,允许车辆和基础设施之间的信息交换,以及自动驾驶汽车的发展。因此,可以制定车辆轨迹和交通信号的协同控制问题,以增加交叉口的通行能力,减少燃料消耗和旅行时间。本文提出了一种交叉口交通流管理方法,该方法由交通信号和联网/自动驾驶车辆轨迹的协同控制组成。该方法结合了一种基于确定性模型的交通信号自适应控制算法和一种两阶段算法,该算法用于预测车辆的运动轨迹。目标优化函数用于构建最优轨迹,考虑了油耗、车道行驶时间和交叉口等待时间。在微观交通仿真包SUMO中对所开发的方法进行了实验研究,使用了3种仿真场景,包括2种合成场景和1种真实城市环境场景。实验研究结果证实了该方法与自适应交通信号控制算法相比在油耗、行驶时间和等待时间方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting in Stock Markets Using the Formalism of Statistical Mechanics Аппроксимация временных рядов индексов вегетации (NDVI и EVI) для мониторинга сельхозкультур (посевов) Хабаровского края On the Partial Stability of Nonlinear Discrete-Time Systems with Delay Алгоритм построения дерева синтаксических единиц русскоязычного предложения по дереву синтаксических связей Mathematical Modeling of the Processes of Executing Packages of Tasks in Conveyor Systems with Intermediate Buffers of Limited Size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1