Trustworthy in silico Cell Labeling via Ensemble-based Image Translation

IF 2.4 Q3 BIOPHYSICS Biophysical reports Pub Date : 2023-10-01 DOI:10.1016/j.bpr.2023.100133
Sara Imboden, Xuanqing Liu, Marie C. Payne, Cho-Jui Hsieh, Neil Y.C. Lin
{"title":"Trustworthy in silico Cell Labeling via Ensemble-based Image Translation","authors":"Sara Imboden, Xuanqing Liu, Marie C. Payne, Cho-Jui Hsieh, Neil Y.C. Lin","doi":"10.1016/j.bpr.2023.100133","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) image translation has been a valuable tool for processing image data in biological and medical research. To apply such a tool in mission-critical applications including drug screening, toxicity study, and clinical diagnostics, it is essential to ensure that the AI prediction is trustworthy. Here, we demonstrated that an ensemble learning method can quantify the uncertainty of AI image translation. We tested the uncertainty evaluation using experimentally acquired images of mesenchymal stromal cells (MSCs). We found that the ensemble method reports a prediction standard deviation that correlates with the prediction error, estimating the prediction uncertainty. We showed that this uncertainty is in agreement with the prediction error and Pearson correlation coefficient. We further showed that the ensemble method can detect out-of-distribution input images by reporting increased uncertainty. Altogether, these results suggest that the ensemble-estimated uncertainty can be a useful indicator for identifying erroneous AI image translations.","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2023.100133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) image translation has been a valuable tool for processing image data in biological and medical research. To apply such a tool in mission-critical applications including drug screening, toxicity study, and clinical diagnostics, it is essential to ensure that the AI prediction is trustworthy. Here, we demonstrated that an ensemble learning method can quantify the uncertainty of AI image translation. We tested the uncertainty evaluation using experimentally acquired images of mesenchymal stromal cells (MSCs). We found that the ensemble method reports a prediction standard deviation that correlates with the prediction error, estimating the prediction uncertainty. We showed that this uncertainty is in agreement with the prediction error and Pearson correlation coefficient. We further showed that the ensemble method can detect out-of-distribution input images by reporting increased uncertainty. Altogether, these results suggest that the ensemble-estimated uncertainty can be a useful indicator for identifying erroneous AI image translations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可信赖的基于集成的图像翻译的硅细胞标记
人工智能(AI)图像翻译已成为生物和医学研究中处理图像数据的重要工具。要将这种工具应用于关键任务应用,包括药物筛选、毒性研究和临床诊断,必须确保人工智能预测是值得信赖的。在这里,我们证明了一种集成学习方法可以量化人工智能图像翻译的不确定性。我们使用实验获得的间充质间质细胞(MSCs)图像来测试不确定度评估。我们发现集合方法报告了一个与预测误差相关的预测标准差,估计了预测的不确定性。我们发现这种不确定性与预测误差和Pearson相关系数是一致的。我们进一步表明,通过报告增加的不确定性,集成方法可以检测出超出分布的输入图像。总之,这些结果表明,集合估计的不确定性可以作为识别错误的人工智能图像翻译的有用指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
期刊最新文献
Development of a digital amplifier system for cut-open oocyte electrophysiology. Structural studies of the human α1 glycine receptor via site-specific chemical cross-linking coupled with mass spectrometry. Expression level of cardiac ryanodine receptors dictates properties of Ca2+-induced Ca2+ release. Nonlinear classifiers for wet-neuromorphic computing using gene regulatory neural network. Magnetic field platform for experiments on well-mixed and spatially structured microbial populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1