Identification in a binary choice panel data model with a predetermined covariate

Stéphane Bonhomme, Kevin Dano, Bryan S. Graham
{"title":"Identification in a binary choice panel data model with a predetermined covariate","authors":"Stéphane Bonhomme, Kevin Dano, Bryan S. Graham","doi":"10.1007/s13209-023-00290-2","DOIUrl":null,"url":null,"abstract":"Abstract We study identification in a binary choice panel data model with a single predetermined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The choice model is indexed by a scalar parameter $$\\theta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>θ</mml:mi> </mml:math> , whereas the distribution of unit-specific heterogeneity, as well as the feedback process that maps lagged outcomes into future covariate realizations, is left unrestricted. We provide a simple condition under which $$\\theta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>θ</mml:mi> </mml:math> is never point-identified, no matter the number of time periods available. This condition is satisfied in most models, including the logit one. We also characterize the identified set of $$\\theta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>θ</mml:mi> </mml:math> and show how to compute it using linear programming techniques. While $$\\theta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>θ</mml:mi> </mml:math> is not generally point-identified, its identified set is informative in the examples we analyze numerically, suggesting that meaningful learning about $$\\theta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>θ</mml:mi> </mml:math> may be possible even in short panels with feedback. As a complement, we report calculations of identified sets for an average partial effect and find informative sets in this case as well.","PeriodicalId":76947,"journal":{"name":"Series paedopsychiatrica","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Series paedopsychiatrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13209-023-00290-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We study identification in a binary choice panel data model with a single predetermined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The choice model is indexed by a scalar parameter $$\theta $$ θ , whereas the distribution of unit-specific heterogeneity, as well as the feedback process that maps lagged outcomes into future covariate realizations, is left unrestricted. We provide a simple condition under which $$\theta $$ θ is never point-identified, no matter the number of time periods available. This condition is satisfied in most models, including the logit one. We also characterize the identified set of $$\theta $$ θ and show how to compute it using linear programming techniques. While $$\theta $$ θ is not generally point-identified, its identified set is informative in the examples we analyze numerically, suggesting that meaningful learning about $$\theta $$ θ may be possible even in short panels with feedback. As a complement, we report calculations of identified sets for an average partial effect and find informative sets in this case as well.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有预定协变量的二元选择面板数据模型中的识别
我们研究了一个二元选择面板数据模型的识别,该模型具有单个预定的二元协变量(即,滞后结果和协变量的协变量顺序外生条件)。选择模型由标量参数$$\theta $$ θ索引,而单位特定异质性的分布,以及将滞后结果映射到未来协变量实现的反馈过程,则不受限制。我们提供了一个简单的条件,在该条件下,无论可用的时间段数量如何,$$\theta $$ θ都不会被点识别。大多数模型都满足这个条件,包括logit模型。我们还描述了$$\theta $$ θ的识别集,并展示了如何使用线性规划技术计算它。虽然$$\theta $$ θ通常不是点识别的,但其识别集在我们进行数值分析的示例中具有信息性,这表明即使在具有反馈的短面板中也可能有意义地学习$$\theta $$ θ。作为补充,我们报告了平均部分效应的识别集的计算,并在这种情况下找到信息集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction to the special issue in honor of Manuel Arellano How consumption carbon emission intensity varies across Spanish households Identification in a binary choice panel data model with a predetermined covariate The differential impact by gender of the Covid-19 pandemic on the labor outcomes of older adults Skill heterogeneity and market labour income inequality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1