Antimicrobial property, corrosion resistance and tarnish resistance of cold-sprayed additive manufactured copper-nickel alloy

IF 4.4 Q2 ENGINEERING, MANUFACTURING Progress in Additive Manufacturing Pub Date : 2023-10-13 DOI:10.1007/s40964-023-00517-5
Thi Thuy Tien Tran, Kannoorpatti Krishnan
{"title":"Antimicrobial property, corrosion resistance and tarnish resistance of cold-sprayed additive manufactured copper-nickel alloy","authors":"Thi Thuy Tien Tran, Kannoorpatti Krishnan","doi":"10.1007/s40964-023-00517-5","DOIUrl":null,"url":null,"abstract":"Abstract The management of infectious diseases has posed a significant challenge in recent years, drawing the attention of scientific communities. Copper is renowned for its robust antimicrobial properties; however, it is susceptible to tarnishing. In contrast, copper-nickel alloy demonstrates not only commendable mechanical strength and corrosion resistance but also exceptional antimicrobial efficacy. A suitable copper-nickel alloy was synthesised using cold spray additive manufacturing, blending copper and nickel powders. The resultant as-printed coupons underwent heat treatment at varying temperatures to ensure alloy formation, porosity reduction, and property enhancement. Both corrosion properties and hardness were investigated across different selected heat treatment conditions. The specimens exhibiting the highest corrosion resistance and hardness were selected for antibacterial and tarnish resistance testing. Stainless Steel 316 was employed in the antibacterial evaluation as a negative control for comparison. Notably, a fair well distribution of copper and nickel was observed within the as-printed product. The optimal heat treatment condition for the copper-nickel alloy was determined to be 1030 °C followed by air cooling, as it exhibited superior material properties compared to alternative heat treatment conditions. An assessment of antimicrobial performance underscored the alloy’s effectiveness in rapidly eradicating bacteria. Additionally, the highest strength samples underwent a tarnish resistance study, revealing elevated tarnish resistance. The nature of material performance in response to the heat-treatment process and antibacterial performance are discussed.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"35 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-023-00517-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The management of infectious diseases has posed a significant challenge in recent years, drawing the attention of scientific communities. Copper is renowned for its robust antimicrobial properties; however, it is susceptible to tarnishing. In contrast, copper-nickel alloy demonstrates not only commendable mechanical strength and corrosion resistance but also exceptional antimicrobial efficacy. A suitable copper-nickel alloy was synthesised using cold spray additive manufacturing, blending copper and nickel powders. The resultant as-printed coupons underwent heat treatment at varying temperatures to ensure alloy formation, porosity reduction, and property enhancement. Both corrosion properties and hardness were investigated across different selected heat treatment conditions. The specimens exhibiting the highest corrosion resistance and hardness were selected for antibacterial and tarnish resistance testing. Stainless Steel 316 was employed in the antibacterial evaluation as a negative control for comparison. Notably, a fair well distribution of copper and nickel was observed within the as-printed product. The optimal heat treatment condition for the copper-nickel alloy was determined to be 1030 °C followed by air cooling, as it exhibited superior material properties compared to alternative heat treatment conditions. An assessment of antimicrobial performance underscored the alloy’s effectiveness in rapidly eradicating bacteria. Additionally, the highest strength samples underwent a tarnish resistance study, revealing elevated tarnish resistance. The nature of material performance in response to the heat-treatment process and antibacterial performance are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷喷涂添加剂制备铜镍合金的抗微生物性能、耐腐蚀性能和抗变色性能
近年来,传染病的管理提出了重大挑战,引起了科学界的关注。铜以其强大的抗菌性能而闻名;然而,它很容易失去光泽。相比之下,铜镍合金不仅具有良好的机械强度和耐腐蚀性,而且具有优异的抗菌效果。采用冷喷涂增材制造技术,将铜和镍粉混合,合成了一种合适的铜镍合金。在不同温度下进行热处理,以确保合金的形成、减少孔隙率和增强性能。研究了不同热处理条件下的腐蚀性能和硬度。选择具有最高耐蚀性和硬度的试样进行抗菌和抗污性测试。采用316不锈钢作为阴性对照进行抗菌评价。值得注意的是,在印刷产品中观察到铜和镍的均匀分布。铜镍合金的最佳热处理条件为1030°C空冷,与其他热处理条件相比,该热处理条件具有优越的材料性能。对抗菌性能的评估强调了该合金在快速根除细菌方面的有效性。此外,最高强度的样品进行了抗污性研究,揭示了提高的抗污性。讨论了材料性能对热处理工艺的响应性质和抗菌性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Additive Manufacturing
Progress in Additive Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
7.20
自引率
0.00%
发文量
113
期刊介绍: Progress in Additive Manufacturing promotes highly scored scientific investigations from academia, government and industry R&D activities. The journal publishes the advances in the processing of different kinds of materials by well-established and new Additive Manufacturing (AM) technologies. Manuscripts showing the progress in the processing and development of multi-materials by hybrid additive manufacturing or by the combination of additive and subtractive manufacturing technologies are also welcome. Progress in Additive Manufacturing serves as a platform for scientists to contribute full papers as well as review articles and short communications analyzing aspects ranging from data processing (new design tools, data formats), simulation, materials (ceramic, metals, polymers, composites, biomaterials and multi-materials), microstructure development, new AM processes or combination of processes (e.g. additive and subtractive, hybrid, multi-steps), parameter and process optimization, new testing methods for AM parts and process monitoring. The journal welcomes manuscripts in several AM topics, including: • Design tools and data format • Material aspects and new developments • Multi-material and composites • Microstructure evolution of AM parts • Optimization of existing processes • Development of new techniques and processing strategies (combination subtractive and additive    methods, hybrid processes) • Integration with conventional manufacturing techniques • Innovative applications of AM parts (for tooling, high temperature or high performance    applications) • Process monitoring and non-destructive testing of AM parts • Speed-up strategies for AM processes • New test methods and special features of AM parts
期刊最新文献
A 4D printed self-assembling PEGDA microscaffold fabricated by digital light processing for arthroscopic articular cartilage tissue engineering. Impact of printing parameters on in-plane tensile and fracture toughness of fused filament fabricated PEEK A machine learning methodology for porosity classification and process map prediction in laser powder bed fusion Setting of L-PBF parameters for obtaining high density and mechanical performance of AISI 316L and 16MnCr5 alloys with fine laser spot size 4D printing of shape memory polymer with continuous carbon fiber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1