Chemical Profiling on Bioactive Stilbenoids in the Seeds of Paeonia Species Growing Wild in Greece

IF 2.5 4区 工程技术 Q3 CHEMISTRY, ANALYTICAL Separations Pub Date : 2023-10-13 DOI:10.3390/separations10100540
Eleni Dimitropoulou, Konstantia Graikou, Vithleem Klontza, Ioanna Chinou
{"title":"Chemical Profiling on Bioactive Stilbenoids in the Seeds of Paeonia Species Growing Wild in Greece","authors":"Eleni Dimitropoulou, Konstantia Graikou, Vithleem Klontza, Ioanna Chinou","doi":"10.3390/separations10100540","DOIUrl":null,"url":null,"abstract":"The seeds of Paeonia clusii Stern subsp. clusii and Paeonia mascula (L.) Mill. subsp. mascula growing wild in Greece, though not previously investigated, has been studied as a source of bioactive stilbenoids and other phenolics. Their methanol extracts were analyzed using ultra high-performance liquid chromatography—high-resolution mass spectrometry (UHPLC-HRMS), and among the identified metabolites (62), 19 paeoniflorin’s derivatives, 17 flavonoids and 12 stilbenes were detected. Moreover, through classic phytochemical separation procedures, twelve among them were isolated and fully spectrally determined as trans-resveratrol, trans-resveratrol-4′-O-β-D-glucopyranoside, cis-resveratrol-4′-O-β-D-glucopyranoside, trans-gnetin-H, trans-ε-viniferin, luteolin, luteolin-3′-O-β-D-glucopyranoside, luteolin-3′,4′-di-O-β-D-glucopyranoside, apigenin, hispidulin, paeoniflorin and benzoyl-paeoniflorin. All seed extracts were measured for their total phenolic content (TPC), appearing as a rich source (116.04 and 103.63 mg GAE/g extract, respectively), followed by free radical (DPPH) scavenging capacity (75.24% and 91.54% inhibition at the concentration of 200 μg/mL). The evaluation of tyrosinase inhibition for both extracts (61% and 70%, respectively) confirmed the potential for their future application in skin health care, comparable with other paeonies of Chinese origin, which are well-known as skin whitening and anti-aging promoters.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"254 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/separations10100540","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The seeds of Paeonia clusii Stern subsp. clusii and Paeonia mascula (L.) Mill. subsp. mascula growing wild in Greece, though not previously investigated, has been studied as a source of bioactive stilbenoids and other phenolics. Their methanol extracts were analyzed using ultra high-performance liquid chromatography—high-resolution mass spectrometry (UHPLC-HRMS), and among the identified metabolites (62), 19 paeoniflorin’s derivatives, 17 flavonoids and 12 stilbenes were detected. Moreover, through classic phytochemical separation procedures, twelve among them were isolated and fully spectrally determined as trans-resveratrol, trans-resveratrol-4′-O-β-D-glucopyranoside, cis-resveratrol-4′-O-β-D-glucopyranoside, trans-gnetin-H, trans-ε-viniferin, luteolin, luteolin-3′-O-β-D-glucopyranoside, luteolin-3′,4′-di-O-β-D-glucopyranoside, apigenin, hispidulin, paeoniflorin and benzoyl-paeoniflorin. All seed extracts were measured for their total phenolic content (TPC), appearing as a rich source (116.04 and 103.63 mg GAE/g extract, respectively), followed by free radical (DPPH) scavenging capacity (75.24% and 91.54% inhibition at the concentration of 200 μg/mL). The evaluation of tyrosinase inhibition for both extracts (61% and 70%, respectively) confirmed the potential for their future application in skin health care, comparable with other paeonies of Chinese origin, which are well-known as skin whitening and anti-aging promoters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
希腊野生芍药种子中生物活性Stilbenoids的化学分析
芍药的种子。赤芍和芍药(L.)轧机。无性系种群。在希腊野生生长的阳刚草,虽然以前没有被调查过,但已经被研究作为生物活性苯乙烯类化合物和其他酚类物质的来源。采用超高效液相色谱-高分辨率质谱(UHPLC-HRMS)对其甲醇提取物进行分析,鉴定出62种代谢物,其中芍药苷衍生物19种,类黄酮17种,二苯乙烯12种。通过经典的植物化学分离方法,分离得到12种化合物,分别为反式白藜芦醇、反式白藜芦醇-4′-O-β- d -葡萄糖苷、顺式白藜芦醇-4′-O-β- d -葡萄糖苷、反式皂素- h、反式ε-葡萄糖苷、木犀草素、木犀草素-3′-O-β- d -葡萄糖苷、木犀草素-3′、4′- 2 -O-β- d -葡萄糖苷、芹菜素、hispidulin、芍药苷和苯甲酰芍药苷。所有种子提取物的总酚含量(TPC)均为丰富的来源(分别为116.04和103.63 mg GAE/g提取物),其次是自由基(DPPH)清除能力(200 μg/mL浓度下抑制75.24%和91.54%)。两种提取物的酪氨酸酶抑制率(分别为61%和70%)证实了它们在皮肤保健方面的潜在应用前景,与其他中国原产的促进皮肤美白和抗衰老的芍药相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separations
Separations Chemistry-Analytical Chemistry
CiteScore
3.00
自引率
15.40%
发文量
342
审稿时长
12 weeks
期刊介绍: Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Manuscripts regarding research proposals and research ideas will be particularly welcomed. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users. The scope of the journal includes but is not limited to: Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.) Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry) Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization
期刊最新文献
Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction Central European Group for Separation Sciences (CEGSS)—Brief History and Memoirs on the Creation and Activity Effect of Fly Ash on the Mass Transfer Performance of CO2 Removal Using MEA and DEA Solutions in a Packed Tower Adsorption Performance and Mechanism of H3PO4-Modified Banana Peel Hydrothermal Carbon on Pb(II)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1