Adsorption Performance and Mechanism of H3PO4-Modified Banana Peel Hydrothermal Carbon on Pb(II)

IF 2.5 4区 工程技术 Q3 CHEMISTRY, ANALYTICAL Separations Pub Date : 2024-01-03 DOI:10.3390/separations11010017
Tao Bai, Yuhu Yao, Jiaxin Zhao, Laixin Tian, Luming Zhang
{"title":"Adsorption Performance and Mechanism of H3PO4-Modified Banana Peel Hydrothermal Carbon on Pb(II)","authors":"Tao Bai, Yuhu Yao, Jiaxin Zhao, Laixin Tian, Luming Zhang","doi":"10.3390/separations11010017","DOIUrl":null,"url":null,"abstract":"This study investigated the adsorption performance of hydrothermal carbon derived from banana peel and modified with different concentrations of phosphoric acid solution, then used to adsorb lead ions in an aqueous solution. The surface structure and functional groups of the modified hydrothermal carbon were analyzed using XRD, SEM, FT-IR, elemental analysis, and BET. The results showed that the adsorption capacity of modified hydrothermal carbon derived from banana peel reached 40.64 mg/g at a hydrothermal temperature of 240 °C, a phosphoric acid solution of 2 mol/L, and a solid–liquid ratio of 2 g/L, with a removal efficiency of 82.74%. The adsorption process conformed to the pseudo-second-order kinetic model and the Langmuir isotherm equation. The correlation coefficient of 0.99 for fitting the adsorption process using an artificial neural network, indicating that the artificial neural network could be used to predict adsorption. The adsorption of Pb(II) from an aqueous solution by phosphoric acid-modified hydrothermal carbon was dominated by monolayer chemical adsorption, and the adsorption mechanisms included electrostatic attraction, ion exchange, surface complexation, and physical adsorption.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"115 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11010017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the adsorption performance of hydrothermal carbon derived from banana peel and modified with different concentrations of phosphoric acid solution, then used to adsorb lead ions in an aqueous solution. The surface structure and functional groups of the modified hydrothermal carbon were analyzed using XRD, SEM, FT-IR, elemental analysis, and BET. The results showed that the adsorption capacity of modified hydrothermal carbon derived from banana peel reached 40.64 mg/g at a hydrothermal temperature of 240 °C, a phosphoric acid solution of 2 mol/L, and a solid–liquid ratio of 2 g/L, with a removal efficiency of 82.74%. The adsorption process conformed to the pseudo-second-order kinetic model and the Langmuir isotherm equation. The correlation coefficient of 0.99 for fitting the adsorption process using an artificial neural network, indicating that the artificial neural network could be used to predict adsorption. The adsorption of Pb(II) from an aqueous solution by phosphoric acid-modified hydrothermal carbon was dominated by monolayer chemical adsorption, and the adsorption mechanisms included electrostatic attraction, ion exchange, surface complexation, and physical adsorption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H3PO4 改性香蕉皮热液碳对铅(II)的吸附性能和机理
本研究考察了从香蕉皮中提取并用不同浓度的磷酸溶液改性后的水热炭对水溶液中铅离子的吸附性能。利用 XRD、SEM、FT-IR、元素分析和 BET 分析了改性水热炭的表面结构和官能团。结果表明,在水热温度为 240 ℃、磷酸溶液为 2 mol/L、固液比为 2 g/L 的条件下,香蕉皮改性水热炭的吸附容量达到 40.64 mg/g,去除率为 82.74%。吸附过程符合伪二阶动力学模型和 Langmuir 等温线方程。利用人工神经网络拟合吸附过程的相关系数为 0.99,表明人工神经网络可用于预测吸附。磷酸改性热液炭对水溶液中铅(II)的吸附以单层化学吸附为主,吸附机理包括静电吸引、离子交换、表面络合和物理吸附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separations
Separations Chemistry-Analytical Chemistry
CiteScore
3.00
自引率
15.40%
发文量
342
审稿时长
12 weeks
期刊介绍: Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Manuscripts regarding research proposals and research ideas will be particularly welcomed. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users. The scope of the journal includes but is not limited to: Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.) Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry) Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization
期刊最新文献
Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction Central European Group for Separation Sciences (CEGSS)—Brief History and Memoirs on the Creation and Activity Effect of Fly Ash on the Mass Transfer Performance of CO2 Removal Using MEA and DEA Solutions in a Packed Tower Adsorption Performance and Mechanism of H3PO4-Modified Banana Peel Hydrothermal Carbon on Pb(II)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1