Skin Detection System Using Infrared Optoelectronic Technology and Its Application in Facial Recognition

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Nanoelectronics and Optoelectronics Pub Date : 2023-07-01 DOI:10.1166/jno.2023.3451
Liangxue Zhu, Guangyu Zhu
{"title":"Skin Detection System Using Infrared Optoelectronic Technology and Its Application in Facial Recognition","authors":"Liangxue Zhu, Guangyu Zhu","doi":"10.1166/jno.2023.3451","DOIUrl":null,"url":null,"abstract":"Facial recognition technology has made significant progress. However, variable lighting conditions can affect its performance. Considering the need to scan facial skin for recognition purposes, this study proposes a miniature optoelectronic acquisition system for skin in the near-infrared range. The system utilizes the C11708MA photodetector from Hamamatsu Photonics’ MS series as the probe for spectral data acquisition. Other hardware components are designed accordingly. A three-stage amplification buffer circuit is employed as the front-end acquisition and preprocessing circuit. The AD7671 chip from Analog Devices Inc. is selected as the AD converter, and the communication module utilizes the CY7C68013 chip from Cypress’ EZ-USB FX2 series. The control and transmission module employs the EP2C5T144C8N FPGA chip from ALTERA’s Cyclone II generation. In order to address the power supply requirements of the CY7C68013 USB chip (3.3 V), the FPGA core (1.2 V), and the AD7671 and front-end preprocessing circuit (5 V), AMS1117 voltage regulator chips are designed for stable 5 V–1.2 V and 5 V–3.3 V power supplies. In the experiments, wavelength calibration and spectral preprocessing are performed on the system prior to data processing. Near-infrared reflectance spectra of different skin conditions (melanoma, vitiligo) are compared with normal skin. The results demonstrate the accurate assessment capability of the designed infrared optoelectronic skin detection system. Facial skin data obtained from the system are used to generate facial images, and the recognition performance of different detection systems is compared in an algorithmic environment, thereby demonstrating the promising application prospects of the infrared optoelectronic skin detection system in the field of facial recognition.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":"4 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jno.2023.3451","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Facial recognition technology has made significant progress. However, variable lighting conditions can affect its performance. Considering the need to scan facial skin for recognition purposes, this study proposes a miniature optoelectronic acquisition system for skin in the near-infrared range. The system utilizes the C11708MA photodetector from Hamamatsu Photonics’ MS series as the probe for spectral data acquisition. Other hardware components are designed accordingly. A three-stage amplification buffer circuit is employed as the front-end acquisition and preprocessing circuit. The AD7671 chip from Analog Devices Inc. is selected as the AD converter, and the communication module utilizes the CY7C68013 chip from Cypress’ EZ-USB FX2 series. The control and transmission module employs the EP2C5T144C8N FPGA chip from ALTERA’s Cyclone II generation. In order to address the power supply requirements of the CY7C68013 USB chip (3.3 V), the FPGA core (1.2 V), and the AD7671 and front-end preprocessing circuit (5 V), AMS1117 voltage regulator chips are designed for stable 5 V–1.2 V and 5 V–3.3 V power supplies. In the experiments, wavelength calibration and spectral preprocessing are performed on the system prior to data processing. Near-infrared reflectance spectra of different skin conditions (melanoma, vitiligo) are compared with normal skin. The results demonstrate the accurate assessment capability of the designed infrared optoelectronic skin detection system. Facial skin data obtained from the system are used to generate facial images, and the recognition performance of different detection systems is compared in an algorithmic environment, thereby demonstrating the promising application prospects of the infrared optoelectronic skin detection system in the field of facial recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
红外光电皮肤检测系统及其在人脸识别中的应用
面部识别技术取得了重大进展。然而,多变的光照条件会影响其性能。考虑到需要扫描面部皮肤以进行识别,本研究提出了一种近红外范围的微型皮肤光电采集系统。该系统采用滨松光电公司的MS系列C11708MA光电探测器作为光谱数据采集探头。其他硬件组件也相应设计。采用三级放大缓冲电路作为前端采集和预处理电路。AD转换器选用Analog Devices公司的AD7671芯片,通信模块采用Cypress公司EZ-USB FX2系列的CY7C68013芯片。控制和传输模块采用ALTERA Cyclone II代的EP2C5T144C8N FPGA芯片。为了解决CY7C68013 USB芯片(3.3 V)、FPGA核心(1.2 V)、AD7671和前端预处理电路(5 V)的供电需求,设计了AMS1117稳压芯片,提供稳定的5 V - 1.2 V和5 V - 3.3 V电源。在实验中,在数据处理之前对系统进行了波长校准和光谱预处理。不同皮肤状况(黑色素瘤、白癜风)的近红外反射光谱与正常皮肤进行比较。结果表明,所设计的红外光电皮肤检测系统具有准确的评估能力。利用系统获取的面部皮肤数据生成面部图像,并在算法环境下比较不同检测系统的识别性能,从而展示了红外光电皮肤检测系统在面部识别领域的良好应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanoelectronics and Optoelectronics
Journal of Nanoelectronics and Optoelectronics 工程技术-工程:电子与电气
自引率
16.70%
发文量
48
审稿时长
12.5 months
期刊最新文献
Pulsed Optoelectronic Rangefinder and Its Measurement Applications in Architectural Design Rationality Assessment Electrochemical Micro-Reaction and Failure Mechanism of New Materials Used at Low Temperature in Coastal Environment Ultrawideband Tunable Polarization Converter Based on Metamaterials Nanofluid Heat Transfer and Flow Characteristics in a Convex Plate Heat Exchanger Based on Multi-Objective Optimization Characterization of ZnO/rGO Nanocomposite and Its Application for Photocatalytic Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1