Heterogeneous Drone Small Cells: Optimal 3D Placement for Downlink Power Efficiency and Rate Satisfaction

IF 4.4 2区 地球科学 Q1 REMOTE SENSING Drones Pub Date : 2023-10-13 DOI:10.3390/drones7100634
Nima Namvar, Fatemeh Afghah, Ismail Guvenc
{"title":"Heterogeneous Drone Small Cells: Optimal 3D Placement for Downlink Power Efficiency and Rate Satisfaction","authors":"Nima Namvar, Fatemeh Afghah, Ismail Guvenc","doi":"10.3390/drones7100634","DOIUrl":null,"url":null,"abstract":"In this paper, we delve into the domain of heterogeneous drone-enabled aerial base stations, each equipped with varying transmit powers, serving as downlink wireless providers for ground users. A central challenge lies in strategically selecting and deploying a subset from the available drone base stations (DBSs) to meet the downlink data rate requirements while minimizing the overall power consumption. To tackle this, we formulate an optimization problem to identify the optimal subset of DBSs, ensuring wireless coverage with an acceptable transmission rate in the downlink path. Moreover, we determine their 3D positions for power consumption optimization. Assuming DBSs operate within the same frequency band, we introduce an innovative, computationally efficient beamforming method to mitigate intercell interference in the downlink. We propose a Kalai–Smorodinsky bargaining solution to establish the optimal beamforming strategy, compensating for interference-related impairments. Our simulation results underscore the efficacy of our solution and offer valuable insights into the performance intricacies of heterogeneous drone-based small-cell networks.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"18 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7100634","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we delve into the domain of heterogeneous drone-enabled aerial base stations, each equipped with varying transmit powers, serving as downlink wireless providers for ground users. A central challenge lies in strategically selecting and deploying a subset from the available drone base stations (DBSs) to meet the downlink data rate requirements while minimizing the overall power consumption. To tackle this, we formulate an optimization problem to identify the optimal subset of DBSs, ensuring wireless coverage with an acceptable transmission rate in the downlink path. Moreover, we determine their 3D positions for power consumption optimization. Assuming DBSs operate within the same frequency band, we introduce an innovative, computationally efficient beamforming method to mitigate intercell interference in the downlink. We propose a Kalai–Smorodinsky bargaining solution to establish the optimal beamforming strategy, compensating for interference-related impairments. Our simulation results underscore the efficacy of our solution and offer valuable insights into the performance intricacies of heterogeneous drone-based small-cell networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构无人机小单元:下行链路功率效率和速率满意度的最佳3D布局
在本文中,我们深入研究了异构无人机支持的空中基站领域,每个基站都配备了不同的发射功率,作为地面用户的下行无线提供商。核心挑战在于战略性地从可用的无人机基站(DBSs)中选择和部署一个子集,以满足下行链路数据速率要求,同时最大限度地降低总体功耗。为了解决这个问题,我们制定了一个优化问题来确定DBSs的最佳子集,以确保在下行路径中具有可接受的传输速率的无线覆盖。此外,我们确定了它们的三维位置,以优化功耗。假设DBSs在同一频带内工作,我们引入了一种创新的、计算效率高的波束形成方法来减轻下行链路中的小区间干扰。我们提出了Kalai-Smorodinsky讨价还价解决方案来建立最佳波束形成策略,补偿与干扰相关的损伤。我们的模拟结果强调了我们的解决方案的有效性,并为基于无人机的异构小蜂窝网络的性能复杂性提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drones
Drones Engineering-Aerospace Engineering
CiteScore
5.60
自引率
18.80%
发文量
331
期刊最新文献
Firefighting Drone Configuration and Scheduling for Wildfire Based on Loss Estimation and Minimization Wind Tunnel Balance Measurements of Bioinspired Tails for a Fixed Wing MAV Three-Dimensional Indoor Positioning Scheme for Drone with Fingerprint-Based Deep-Learning Classifier Blockchain-Enabled Infection Sample Collection System Using Two-Echelon Drone-Assisted Mechanism Joint Trajectory Design and Resource Optimization in UAV-Assisted Caching-Enabled Networks with Finite Blocklength Transmissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1