Rubber Comprehensive Constitutive Equation and the Prediction of Tire Temperature and Rolling Resistance

IF 0.9 Q4 ENGINEERING, MECHANICAL Tire Science and Technology Pub Date : 2023-07-01 DOI:10.2346/tst-21-012
Mahmoud Assaad, Tom Ebbott, Bing Jiang, Gert Rebel
{"title":"Rubber Comprehensive Constitutive Equation and the Prediction of Tire Temperature and Rolling Resistance","authors":"Mahmoud Assaad, Tom Ebbott, Bing Jiang, Gert Rebel","doi":"10.2346/tst-21-012","DOIUrl":null,"url":null,"abstract":"ABSTRACT Cooler running tires with a reduced rolling resistance is a consideration for both tire makers and automotive original equipment manufacturers. To investigate the mechanics of energy loss and temperature rise, a nonlinear viscoelastic model suitable for numerical analysis of rolling tires is developed and demonstrated. The rubber compounds are represented as nonlinear viscoelastic materials with temperature and frequency, strain, and strain history–dependent response. Several applications to different tire designs are provided to demonstrate the impact of this new material constitutive law in improving the quality of the numerical predictions over other methods. One application is a rolling tire model that was used to delineate the tire temperature distribution and the resultant rolling resistance for different three-dimensional tread patterns.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/tst-21-012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Cooler running tires with a reduced rolling resistance is a consideration for both tire makers and automotive original equipment manufacturers. To investigate the mechanics of energy loss and temperature rise, a nonlinear viscoelastic model suitable for numerical analysis of rolling tires is developed and demonstrated. The rubber compounds are represented as nonlinear viscoelastic materials with temperature and frequency, strain, and strain history–dependent response. Several applications to different tire designs are provided to demonstrate the impact of this new material constitutive law in improving the quality of the numerical predictions over other methods. One application is a rolling tire model that was used to delineate the tire temperature distribution and the resultant rolling resistance for different three-dimensional tread patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
橡胶综合本构方程及轮胎温度和滚动阻力预测
具有降低滚动阻力的冷却器运行轮胎是轮胎制造商和汽车原始设备制造商的考虑因素。为了研究能量损失和温升的机理,建立了适用于滚动轮胎数值分析的非线性粘弹性模型,并进行了验证。橡胶化合物被表示为具有温度和频率、应变和应变历史相关响应的非线性粘弹性材料。在不同轮胎设计中的应用表明,与其他方法相比,这种新的材料本构律在提高数值预测质量方面的影响。其中一个应用是滚动轮胎模型,该模型用于描述轮胎温度分布和不同三维胎面花纹产生的滚动阻力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tire Science and Technology
Tire Science and Technology ENGINEERING, MECHANICAL-
CiteScore
2.10
自引率
0.00%
发文量
11
期刊介绍: Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.
期刊最新文献
Influence of Tire-Enveloping Model Complexity on High-Frequency Simulations Determination of Penetration Depth and Excited Volume of Rubber in Klüppel Friction Theory from Friction Law Determination of Penetration Depth and Excited Volume of Rubber in Klüppel Friction Theory from Friction Law Target Conflict for Force Transmission in Lateral and Longitudinal Direction of Rotated Tread Block Samples on Different Road Surfaces (Dry, Wet, Snow, and Ice) Modelling Intrinsic Sources of Nonuniformity and Their Interplay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1