{"title":"Development and Performance Evaluation of Double Bending Beam Force Transducer for Low-Force Measurement","authors":"Vikas, Surya Kumar Gautam, S. S. K. Titus","doi":"10.1007/s12647-023-00687-1","DOIUrl":null,"url":null,"abstract":"<div><p>Precision and traceable measurement of small forces have become increasingly important due to the rapid change in technology and miniaturization of devices. In this paper, we have discussed the design, development and metrological aspects of double bending beam force transducer for low-force measurements. To achieve this task, elastic spring element is designed and machined for fabricating the force transducer and virtually tested through the finite element analysis (FEA) method to validate its load capacity and to understand its mechanical behaviour. The metrological capability of spring element is determined with the application of small forces, sensing the applied forces through contact and non-contact methods. In the contact method, strain gauges are employed for the detection of induced strain on the spring element<b>.</b> For this, the maximum and minimum strain values and their distribution are found to get the optimum normalized output in the electrical unit of mV/V. In the non-contact method, a pair of light-emitting diode (LED) and light-dependent resistor (LDR) is utilized for the detection of the bending caused by the applied force. The optimal detectable deflection is found in the spring element through FEA. The experimental characterization results of the force transducers showed that the developed force transducers have good metrological capability in terms of high linearity and repeatability in the range of 0.3–3 N.</p></div>","PeriodicalId":689,"journal":{"name":"MAPAN","volume":"39 2","pages":"275 - 284"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAPAN","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12647-023-00687-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Precision and traceable measurement of small forces have become increasingly important due to the rapid change in technology and miniaturization of devices. In this paper, we have discussed the design, development and metrological aspects of double bending beam force transducer for low-force measurements. To achieve this task, elastic spring element is designed and machined for fabricating the force transducer and virtually tested through the finite element analysis (FEA) method to validate its load capacity and to understand its mechanical behaviour. The metrological capability of spring element is determined with the application of small forces, sensing the applied forces through contact and non-contact methods. In the contact method, strain gauges are employed for the detection of induced strain on the spring element. For this, the maximum and minimum strain values and their distribution are found to get the optimum normalized output in the electrical unit of mV/V. In the non-contact method, a pair of light-emitting diode (LED) and light-dependent resistor (LDR) is utilized for the detection of the bending caused by the applied force. The optimal detectable deflection is found in the spring element through FEA. The experimental characterization results of the force transducers showed that the developed force transducers have good metrological capability in terms of high linearity and repeatability in the range of 0.3–3 N.
期刊介绍:
MAPAN-Journal Metrology Society of India is a quarterly publication. It is exclusively devoted to Metrology (Scientific, Industrial or Legal). It has been fulfilling an important need of Metrologists and particularly of quality practitioners by publishing exclusive articles on scientific, industrial and legal metrology.
The journal publishes research communication or technical articles of current interest in measurement science; original work, tutorial or survey papers in any metrology related area; reviews and analytical studies in metrology; case studies on reliability, uncertainty in measurements; and reports and results of intercomparison and proficiency testing.