{"title":"Glutathione Concentration in Dunaliella salina: A Growth-Phase-Dependent Study","authors":"Midori Kurahashi, Angelica Naka, Kazuhiko Enokida, Yasuhiko Morita","doi":"10.3390/microbiolres14040101","DOIUrl":null,"url":null,"abstract":"The microalga Dunaliella salina can produce antioxidants such as glutathione, which is an essential and powerful regulator of major cell functions. Changes in the glutathione concentration occur due to a microalga’s response to oxidative stress, which usually occurs when cells are exposed to environmental stressors or reach senescence. This study represents one of the few examples where changes in the glutathione concentration were tracked over the entire growth cycle of an alga. We found significant differences in the glutathione concentration depending on the growth stage. During the early lag growth phase, D. salina had relatively low levels of glutathione (190–280 µmol/1012 cell), which gradually increased as it entered the log phase (280–500 µmol/1012 cell) but then decreased as it entered the stationary phase (320–370 µmol/1012 cell). We also observed that the ratio between the reduced form of glutathione (GSH) and the oxidized form (GSSG) decreased with time, probably as a result of senescence or a lack of nutrients.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"37 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres14040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The microalga Dunaliella salina can produce antioxidants such as glutathione, which is an essential and powerful regulator of major cell functions. Changes in the glutathione concentration occur due to a microalga’s response to oxidative stress, which usually occurs when cells are exposed to environmental stressors or reach senescence. This study represents one of the few examples where changes in the glutathione concentration were tracked over the entire growth cycle of an alga. We found significant differences in the glutathione concentration depending on the growth stage. During the early lag growth phase, D. salina had relatively low levels of glutathione (190–280 µmol/1012 cell), which gradually increased as it entered the log phase (280–500 µmol/1012 cell) but then decreased as it entered the stationary phase (320–370 µmol/1012 cell). We also observed that the ratio between the reduced form of glutathione (GSH) and the oxidized form (GSSG) decreased with time, probably as a result of senescence or a lack of nutrients.
期刊介绍:
Microbiology Research is an international, online-only, open access peer-reviewed journal which publishes original research, review articles, editorials, perspectives, case reports and brief reports to benefit researchers, microbiologists, physicians, veterinarians. Microbiology Research publishes ‘Clinic’ and ‘Research’ papers divided into two different skill and proficiency levels: ‘Junior’ and ‘Professional’. The aim of this four quadrant grid is to encourage younger researchers, physicians and veterinarians to submit their results even if their studies encompass just a limited set of observations or rely on basic statistical approach, yet upholding the customary sound approach of every scientific article.