A guide to Whittle maximum likelihood estimator in MATLAB

Clément Roume
{"title":"A guide to Whittle maximum likelihood estimator in MATLAB","authors":"Clément Roume","doi":"10.3389/fnetp.2023.1204757","DOIUrl":null,"url":null,"abstract":"The assessment of physiological complexity via the estimation of monofractal exponents or multifractal spectra of biological signals is a recent field of research that allows detection of relevant and original information for health, learning, or autonomy preservation. This tutorial aims at introducing Whittle’s maximum likelihood estimator (MLE) that estimates the monofractal exponent of time series. After introducing Whittle’s maximum likelihood estimator and presenting each of the steps leading to the construction of the algorithm, this tutorial discusses the performance of this estimator by comparing it to the widely used detrended fluctuation analysis (DFA). The objective of this tutorial is to propose to the reader an alternative monofractal estimation method, which has the advantage of being simple to implement, and whose high accuracy allows the analysis of shorter time series than those classically used with other monofractal analysis methods.","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"51 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2023.1204757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The assessment of physiological complexity via the estimation of monofractal exponents or multifractal spectra of biological signals is a recent field of research that allows detection of relevant and original information for health, learning, or autonomy preservation. This tutorial aims at introducing Whittle’s maximum likelihood estimator (MLE) that estimates the monofractal exponent of time series. After introducing Whittle’s maximum likelihood estimator and presenting each of the steps leading to the construction of the algorithm, this tutorial discusses the performance of this estimator by comparing it to the widely used detrended fluctuation analysis (DFA). The objective of this tutorial is to propose to the reader an alternative monofractal estimation method, which has the advantage of being simple to implement, and whose high accuracy allows the analysis of shorter time series than those classically used with other monofractal analysis methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
惠特尔极大似然估计的MATLAB指南
通过估计生物信号的单分形指数或多重分形谱来评估生理复杂性是一个最近的研究领域,它允许检测健康、学习或自主保护的相关和原始信息。本教程旨在介绍估计时间序列单分形指数的Whittle最大似然估计器(MLE)。在介绍了Whittle的最大似然估计器并介绍了构造该算法的每个步骤之后,本教程通过将该估计器与广泛使用的去趋势波动分析(DFA)进行比较,讨论了该估计器的性能。本教程的目的是向读者提出一种可选的单分形估计方法,该方法具有易于实现的优点,并且其高精度允许分析比其他单分形分析方法经典使用的更短的时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. Significant nocturnal wakefulness after sleep onset in metabolic dysfunction-associated steatotic liver disease. Networks through the lens of high-frequency oscillations. Constructing representative group networks from tractography: lessons from a dynamical approach. Physiological signal analysis and open science using the Julia language and associated software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1