{"title":"Real-time vehicle detection using segmentation-based detection network and trajectory prediction","authors":"Nafiseh Zarei, Payman Moallem, Mohammadreza Shams","doi":"10.1049/cvi2.12236","DOIUrl":null,"url":null,"abstract":"<p>The position of vehicles is determined using an algorithm that includes two stages of detection and prediction. The more the number of frames in which the detection network is used, the more accurate the detector is, and the more the prediction network is used, the algorithm is faster. Therefore, the algorithm is very flexible to achieve the required accuracy and speed. YOLO's base detection network is designed to be robust against vehicle scale changes. Also, feature maps are produced in the detector network, which contribute greatly to increasing the accuracy of the detector. In these maps, using differential images and a u-net-based module, image segmentation has been done into two classes: vehicle and background. To increase the accuracy of the recursive predictive network, vehicle manoeuvres are classified. For this purpose, the spatial and temporal information of the vehicles are considered simultaneously. This classifier is much more effective than classifiers that consider spatial and temporal information separately. The Highway and UA-DETRAC datasets demonstrate the performance of the proposed algorithm in urban traffic monitoring systems.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 2","pages":"191-209"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12236","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12236","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The position of vehicles is determined using an algorithm that includes two stages of detection and prediction. The more the number of frames in which the detection network is used, the more accurate the detector is, and the more the prediction network is used, the algorithm is faster. Therefore, the algorithm is very flexible to achieve the required accuracy and speed. YOLO's base detection network is designed to be robust against vehicle scale changes. Also, feature maps are produced in the detector network, which contribute greatly to increasing the accuracy of the detector. In these maps, using differential images and a u-net-based module, image segmentation has been done into two classes: vehicle and background. To increase the accuracy of the recursive predictive network, vehicle manoeuvres are classified. For this purpose, the spatial and temporal information of the vehicles are considered simultaneously. This classifier is much more effective than classifiers that consider spatial and temporal information separately. The Highway and UA-DETRAC datasets demonstrate the performance of the proposed algorithm in urban traffic monitoring systems.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf