Yessy Oktafriani, Gerry Firmansyah, Budi Tjahjono, Agung Mulyo Widodo
{"title":"Analysis of Data Mining Applications for Determining Credit Eligibility Using Classification Algorithms C4.5, Naïve Bayes, K-NN, and Random Forest","authors":"Yessy Oktafriani, Gerry Firmansyah, Budi Tjahjono, Agung Mulyo Widodo","doi":"10.59888/ajosh.v1i12.119","DOIUrl":null,"url":null,"abstract":"This study aims to enhance the credit evaluation process within Credit Union (CU) Karya Bersama Lestari (KABARI). The study leveraged four distinct algorithms, namely Decision Tree C4.5, Naive Bayes, K-Nearest Neighbors (K-NN), and Random Forest, to predict the suitability of extending loans to potential borrowers. Rapid Miner was employed as a tool to maximize accuracy by analyzing the Confusion matrix. Testing was conducted on a dataset consisting of 459 member loan submissions. The results of the analysis revealed that the K-Nearest Neighbors (K-NN) algorithm achieved the highest accuracy among the evaluated algorithms. Specifically, the Decision Tree algorithm demonstrated an accuracy rate of 95.65%, along with a precision and recall of 94.12%. The Naive Bayes algorithm achieved an accuracy rate of 95.65%, supported by precision and recall values of 100% and 88.24%, respectively. The K-Nearest Neighbors algorithm displayed the highest accuracy rate of 97.83%, accompanied by 100% precision and 94.12% recall. Meanwhile, the Random Forest algorithm exhibited an accuracy rate of 93.48%, complemented by precision and recall values of 100% and 82.35%, respectively. The study's conclusions bear relevance for refining loan approval processes and fostering improved lending practices within financial institutions like CU KABARI.","PeriodicalId":92175,"journal":{"name":"Asian journal of research in social sciences and humanities","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian journal of research in social sciences and humanities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59888/ajosh.v1i12.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to enhance the credit evaluation process within Credit Union (CU) Karya Bersama Lestari (KABARI). The study leveraged four distinct algorithms, namely Decision Tree C4.5, Naive Bayes, K-Nearest Neighbors (K-NN), and Random Forest, to predict the suitability of extending loans to potential borrowers. Rapid Miner was employed as a tool to maximize accuracy by analyzing the Confusion matrix. Testing was conducted on a dataset consisting of 459 member loan submissions. The results of the analysis revealed that the K-Nearest Neighbors (K-NN) algorithm achieved the highest accuracy among the evaluated algorithms. Specifically, the Decision Tree algorithm demonstrated an accuracy rate of 95.65%, along with a precision and recall of 94.12%. The Naive Bayes algorithm achieved an accuracy rate of 95.65%, supported by precision and recall values of 100% and 88.24%, respectively. The K-Nearest Neighbors algorithm displayed the highest accuracy rate of 97.83%, accompanied by 100% precision and 94.12% recall. Meanwhile, the Random Forest algorithm exhibited an accuracy rate of 93.48%, complemented by precision and recall values of 100% and 82.35%, respectively. The study's conclusions bear relevance for refining loan approval processes and fostering improved lending practices within financial institutions like CU KABARI.