Manuel Fernandez-Carmona, Sariah Mghames, Nicola Bellotto
{"title":"Wavelet-based temporal models of human activity for anomaly detection in smart robot-assisted environments1","authors":"Manuel Fernandez-Carmona, Sariah Mghames, Nicola Bellotto","doi":"10.3233/ais-230144","DOIUrl":null,"url":null,"abstract":"Detecting anomalies in patterns of sensor data is important in many practical applications, including domestic activity monitoring for Active Assisted Living (AAL). How to represent and analyse these patterns, however, remains a challenging task, especially when data is relatively scarce and an explicit model is required to be fine-tuned for specific scenarios. This paper, therefore, presents a new approach for temporal modelling of long-term human activities with smart-home sensors, which is used to detect anomalous situations in a robot-assisted environment. The model is based on wavelet transforms and used to forecast smart sensor data, providing a temporal prior to detect unexpected events in human environments. To this end, a new extension of Hybrid Markov Logic Networks has been developed that merges different anomaly indicators, including activities detected by binary sensors, expert logic rules, and wavelet-based temporal models. The latter in particular allows the inference system to discover deviations from long-term activity patterns, which cannot be detected by simpler frequency-based models. Two new publicly available datasets were collected using several smart-sensors to evaluate the approach in office and domestic scenarios. The experimental results demonstrate the effectiveness of the proposed solutions and their successful deployment in complex human environments, showing their potential for future smart-home and robot integrated services.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"15 3","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ais-230144","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting anomalies in patterns of sensor data is important in many practical applications, including domestic activity monitoring for Active Assisted Living (AAL). How to represent and analyse these patterns, however, remains a challenging task, especially when data is relatively scarce and an explicit model is required to be fine-tuned for specific scenarios. This paper, therefore, presents a new approach for temporal modelling of long-term human activities with smart-home sensors, which is used to detect anomalous situations in a robot-assisted environment. The model is based on wavelet transforms and used to forecast smart sensor data, providing a temporal prior to detect unexpected events in human environments. To this end, a new extension of Hybrid Markov Logic Networks has been developed that merges different anomaly indicators, including activities detected by binary sensors, expert logic rules, and wavelet-based temporal models. The latter in particular allows the inference system to discover deviations from long-term activity patterns, which cannot be detected by simpler frequency-based models. Two new publicly available datasets were collected using several smart-sensors to evaluate the approach in office and domestic scenarios. The experimental results demonstrate the effectiveness of the proposed solutions and their successful deployment in complex human environments, showing their potential for future smart-home and robot integrated services.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.