A UAV deployment strategy based on a probabilistic data coverage model for mobile CrowdSensing applications

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Ambient Intelligence and Smart Environments Pub Date : 2023-12-08 DOI:10.3233/ais-220601
M. Girolami, Erminia Cipullo, Tommaso Colella, Stefano Chessa
{"title":"A UAV deployment strategy based on a probabilistic data coverage model for mobile CrowdSensing applications","authors":"M. Girolami, Erminia Cipullo, Tommaso Colella, Stefano Chessa","doi":"10.3233/ais-220601","DOIUrl":null,"url":null,"abstract":"Mobile CrowdSensing (MCS) is a computational paradigm designed to gather sensing data by using personal devices of MCS platform users. However, being the mobility of devices tightly correlated with mobility of their owners, the locations from which data are collected might be limited to specific sub-regions. We extend the data coverage capability of a traditional MCS platform by exploiting unmanned aerial vehicles (UAV) as mobile sensors gathering data from low covered locations. We present a probabilistic model designed to measure the coverage of a location. The model analyses the user’s trajectories and the detouring capability of users towards locations of interest. Our model provides a coverage probability for each of the target locations, so that to identify low-covered locations. In turn, these locations are used as targets for the StationPositioning algorithms which optimizes the deployment of k UAV stations. We analyze the performance of StationPositioning by comparing the ratio of the covered locations against Random, DBSCAN and KMeans deployment algorithm. We explore the performance by varying the time period, the deployment regions and the existence of areas where it is not possible to deploy any station. Our experimental results show that StationPositioning is able to optimize the selected target location for a number of UAV stations with a maximum covered ratio up to 60%.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"17 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-220601","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile CrowdSensing (MCS) is a computational paradigm designed to gather sensing data by using personal devices of MCS platform users. However, being the mobility of devices tightly correlated with mobility of their owners, the locations from which data are collected might be limited to specific sub-regions. We extend the data coverage capability of a traditional MCS platform by exploiting unmanned aerial vehicles (UAV) as mobile sensors gathering data from low covered locations. We present a probabilistic model designed to measure the coverage of a location. The model analyses the user’s trajectories and the detouring capability of users towards locations of interest. Our model provides a coverage probability for each of the target locations, so that to identify low-covered locations. In turn, these locations are used as targets for the StationPositioning algorithms which optimizes the deployment of k UAV stations. We analyze the performance of StationPositioning by comparing the ratio of the covered locations against Random, DBSCAN and KMeans deployment algorithm. We explore the performance by varying the time period, the deployment regions and the existence of areas where it is not possible to deploy any station. Our experimental results show that StationPositioning is able to optimize the selected target location for a number of UAV stations with a maximum covered ratio up to 60%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于移动人群感应应用概率数据覆盖模型的无人机部署策略
MCS (Mobile CrowdSensing)是一种利用MCS平台用户的个人设备收集传感数据的计算范式。然而,由于设备的移动性与其所有者的移动性密切相关,因此收集数据的位置可能仅限于特定的子区域。我们通过利用无人机(UAV)作为移动传感器从低覆盖位置收集数据,扩展了传统MCS平台的数据覆盖能力。我们提出了一个概率模型,用于测量一个位置的覆盖范围。该模型分析了用户的轨迹和用户向感兴趣位置绕行的能力。我们的模型为每个目标位置提供了覆盖概率,以便识别低覆盖位置。反过来,这些位置被用作站点定位算法的目标,优化k个无人机站点的部署。通过将覆盖位置的比例与Random、DBSCAN和KMeans部署算法进行比较,分析了StationPositioning的性能。我们通过改变时间段、部署区域和不可能部署任何站点的存在区域来探索性能。我们的实验结果表明,站定位能够优化多个无人机站所选择的目标位置,最大覆盖比可达60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Ambient Intelligence and Smart Environments
Journal of Ambient Intelligence and Smart Environments COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
4.30
自引率
17.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.
期刊最新文献
Evaluation factors of adopting smart home IoT: The hybrid fuzzy MCDM approach for robot vacuum Hybrid fuzzy response threshold-based distributed task allocation in heterogeneous multi-robot environment From programming-to-modeling-to-prompts smart ubiquitous applications A UAV deployment strategy based on a probabilistic data coverage model for mobile CrowdSensing applications Memoization based priority-aware task management for QoS provisioning in IoT gateways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1