Photocatalytic Simulation of Phenol Waste Degradation Using Titanium Dioxide (TiO2) P25-Based Photocatalysts

IF 0.9 Q3 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering and Technological Sciences Pub Date : 2023-10-31 DOI:10.5614/j.eng.technol.sci.2023.55.4.6
Wibawa Hendra Saputera, Jeffry Jaya Pranata, Reynaldo Jonatan, Pramujo Widiatmoko, Dwiwahju Sasongko
{"title":"Photocatalytic Simulation of Phenol Waste Degradation Using Titanium Dioxide (TiO2) P25-Based Photocatalysts","authors":"Wibawa Hendra Saputera, Jeffry Jaya Pranata, Reynaldo Jonatan, Pramujo Widiatmoko, Dwiwahju Sasongko","doi":"10.5614/j.eng.technol.sci.2023.55.4.6","DOIUrl":null,"url":null,"abstract":"Phenol waste treatment is vital in industries such as polymer production, coal gasification, refinery, and coke production. Photocatalytic technology using semiconductor materials offers an effective and ecofriendly approach to degrade phenol. TiO2 P25 is a widely used photocatalyst, known for its cost-effectiveness, favorable optical and electronic properties, high photoactivity, and photostability. The PHOTOREAC application, a recently developed MATLAB-based software, simulates the degradation of phenol using visible light. A study that combines existing literature and research revealed that pH significantly influences photocatalytic activity, with an optimum pH of 7 for TiO2 P25-mediated phenol degradation. The recommended photocatalyst concentration ranged from 0 to 10 g/L for reactor volumes between 25 and 60 mL, and from 0 to 5 g/L for 100-mL reactors. Phenol wastewater volume and light intensity also impact degradation efficiency. Adequate oxygen supply, achieved through bubbling and mixing, is essential for the formation of radical compounds. The Ballari kinetic model proved to be the most suitable for phenol degradation with TiO2 P25. Thus, by combining PHOTOREAC simulations with experimental data, the treatment process could be optimized to achieve higher degradation efficiency and estimate the treatment time for specific waste degradation levels. This study contributes to the advancement of phenol waste treatment and the development of improved photocatalytic wastewater treatment technologies.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.4.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Phenol waste treatment is vital in industries such as polymer production, coal gasification, refinery, and coke production. Photocatalytic technology using semiconductor materials offers an effective and ecofriendly approach to degrade phenol. TiO2 P25 is a widely used photocatalyst, known for its cost-effectiveness, favorable optical and electronic properties, high photoactivity, and photostability. The PHOTOREAC application, a recently developed MATLAB-based software, simulates the degradation of phenol using visible light. A study that combines existing literature and research revealed that pH significantly influences photocatalytic activity, with an optimum pH of 7 for TiO2 P25-mediated phenol degradation. The recommended photocatalyst concentration ranged from 0 to 10 g/L for reactor volumes between 25 and 60 mL, and from 0 to 5 g/L for 100-mL reactors. Phenol wastewater volume and light intensity also impact degradation efficiency. Adequate oxygen supply, achieved through bubbling and mixing, is essential for the formation of radical compounds. The Ballari kinetic model proved to be the most suitable for phenol degradation with TiO2 P25. Thus, by combining PHOTOREAC simulations with experimental data, the treatment process could be optimized to achieve higher degradation efficiency and estimate the treatment time for specific waste degradation levels. This study contributes to the advancement of phenol waste treatment and the development of improved photocatalytic wastewater treatment technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化钛(TiO2) p25基光催化剂光催化降解苯酚废物的模拟
苯酚废物处理在聚合物生产、煤气化、炼油厂和焦炭生产等工业中至关重要。利用半导体材料的光催化技术为降解苯酚提供了一种有效且环保的方法。TiO2 P25是一种广泛应用的光催化剂,具有成本效益高、光学和电子性能好、光活性高、光稳定性好等优点。PHOTOREAC应用程序,一个最近开发的基于matlab的软件,模拟苯酚的降解使用可见光。结合已有文献和研究发现,pH对光催化活性有显著影响,TiO2 p25介导的苯酚降解的最佳pH为7。对于反应器体积在25至60 mL之间的反应器,推荐的光催化剂浓度范围为0至10 g/L,对于100 mL的反应器,推荐的光催化剂浓度范围为0至5 g/L。苯酚废水量和光照强度也影响降解效率。通过鼓泡和混合来获得充足的氧气供应,对于自由基化合物的形成至关重要。balari动力学模型最适合于TiO2 P25对苯酚的降解。因此,通过将PHOTOREAC模拟与实验数据相结合,可以优化处理工艺以达到更高的降解效率,并估计特定废物降解水平的处理时间。该研究有助于推进苯酚废水处理和改进光催化废水处理技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineering and Technological Sciences
Journal of Engineering and Technological Sciences ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
77
审稿时长
24 weeks
期刊介绍: Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Green Energy Technologies: A Key Driver in Carbon Emission Reduction The Effect of Illumination, Electrode Distance, and Illumination Periods on the Performance of Phototrophic Sediment Microbial Fuel Cells (PSMFCs) Comparison Study of Corn Leaf Disease Detection based on Deep Learning YOLO-v5 and YOLO-v8 Hematite-Gamma Alumina-based Solid Catalyst Development for Biodiesel Production from Palm Oil Minimize Total Cost and Maximize Total Profit for Power Systems with Pumped Storage Hydro and Renewable Power Plants Using Improved Self-Organizing Migration Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1