Wanlong Zhao, Yuejun Zhang, Liang Wen, Pengjun Wang
{"title":"A 7-nm-Based 5R4W High-Timing Reliability Regfile Circuit","authors":"Wanlong Zhao, Yuejun Zhang, Liang Wen, Pengjun Wang","doi":"10.1049/2023/1548352","DOIUrl":null,"url":null,"abstract":"Register file (Regfile), as the bottleneck circuit for processor data interaction, directly determines the computing performance of the system. To address the read/write conflict and timing error problems of register heap, this paper proposes a 5R4W high-timing reliability Regfile circuit design scheme. First, the scheme analyzed the principles of timing errors such as read/write conflicts, write errors, and read errors in the Regfile circuit; then adopted the timing separation method of independent control of the read/write process by clock double edges to solve multiport read/write conflicts, designed a mirror memory check circuit to avoid write errors caused by the word line delays, and used a phase-locked clock feedback structure to eliminate read errors caused by the data timing fluctuations; in the TSMC 7 nm FinFET process, a 64 × 74-bit 5R4W Regfile circuit was implemented using a fully customized layout. Experimental results show that the Regfile circuit has an area of 0.13 mm2 and consumes 5.541 mW. The circuit operates at a maximum frequency of 3.8 GHz at −40 to −125°C and 0.75 V, and is capable of detecting write errors caused by a clock jitter exceeding 30 ps or a frequency above 5 GHz.","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"70 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/1548352","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Register file (Regfile), as the bottleneck circuit for processor data interaction, directly determines the computing performance of the system. To address the read/write conflict and timing error problems of register heap, this paper proposes a 5R4W high-timing reliability Regfile circuit design scheme. First, the scheme analyzed the principles of timing errors such as read/write conflicts, write errors, and read errors in the Regfile circuit; then adopted the timing separation method of independent control of the read/write process by clock double edges to solve multiport read/write conflicts, designed a mirror memory check circuit to avoid write errors caused by the word line delays, and used a phase-locked clock feedback structure to eliminate read errors caused by the data timing fluctuations; in the TSMC 7 nm FinFET process, a 64 × 74-bit 5R4W Regfile circuit was implemented using a fully customized layout. Experimental results show that the Regfile circuit has an area of 0.13 mm2 and consumes 5.541 mW. The circuit operates at a maximum frequency of 3.8 GHz at −40 to −125°C and 0.75 V, and is capable of detecting write errors caused by a clock jitter exceeding 30 ps or a frequency above 5 GHz.
期刊介绍:
IET Circuits, Devices & Systems covers the following topics:
Circuit theory and design, circuit analysis and simulation, computer aided design
Filters (analogue and switched capacitor)
Circuit implementations, cells and architectures for integration including VLSI
Testability, fault tolerant design, minimisation of circuits and CAD for VLSI
Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs
Device and process characterisation, device parameter extraction schemes
Mathematics of circuits and systems theory
Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers