Conditional sum of squares estimation of k-factor GARMA models

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2023-10-31 DOI:10.1007/s10182-023-00482-y
Paul M. Beaumont, Aaron D. Smallwood
{"title":"Conditional sum of squares estimation of k-factor GARMA models","authors":"Paul M. Beaumont,&nbsp;Aaron D. Smallwood","doi":"10.1007/s10182-023-00482-y","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze issues related to estimation and inference for the constrained sum of squares estimator (CSS) of the <i>k</i>-factor Gegenbauer autoregressive moving average (GARMA) model. We present theoretical results for the estimator and show that the parameters that determine the cycle lengths are asymptotically independent, converging at rate <i>T</i>, the sample size, for finite cycles. The remaining parameters lack independence and converge at the standard rate. Analogous with existing literature, some challenges exist for testing the hypothesis of non-cyclical long memory, since the associated parameter lies on the boundary of the parameter space. We present simulation results to explore small sample properties of the estimator, which support most distributional results, while also highlighting areas that merit additional exploration. We demonstrate the applicability of the theory and estimator with an application to IBM trading volume.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-023-00482-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze issues related to estimation and inference for the constrained sum of squares estimator (CSS) of the k-factor Gegenbauer autoregressive moving average (GARMA) model. We present theoretical results for the estimator and show that the parameters that determine the cycle lengths are asymptotically independent, converging at rate T, the sample size, for finite cycles. The remaining parameters lack independence and converge at the standard rate. Analogous with existing literature, some challenges exist for testing the hypothesis of non-cyclical long memory, since the associated parameter lies on the boundary of the parameter space. We present simulation results to explore small sample properties of the estimator, which support most distributional results, while also highlighting areas that merit additional exploration. We demonstrate the applicability of the theory and estimator with an application to IBM trading volume.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
k 因子 GARMA 模型的条件平方和估计
我们分析了 k 因子格根鲍尔自回归移动平均(GARMA)模型的约束平方和估计器(CSS)的估计和推断相关问题。我们给出了估计器的理论结果,并表明决定周期长度的参数是渐近独立的,在有限周期内以样本大小 T 的速率收敛。其余参数缺乏独立性,以标准速率收敛。与现有文献类似,由于相关参数位于参数空间的边界上,因此在检验非周期性长记忆假设时存在一些挑战。我们展示了模拟结果,以探索估计器的小样本特性,这些结果支持大多数分布结果,同时也强调了值得进一步探索的领域。我们通过对 IBM 交易量的应用证明了理论和估计器的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis A Finite-sample bias correction method for general linear model in the presence of differential measurement errors Classes of probability measures built on the properties of Benford’s law Wasserstein barycenter regression: application to the joint dynamics of regional GDP and life expectancy in Italy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1