The Design and Process Reliability Analysis of Millimeter Wave CMOS Power Amplifier with a Cold Mode MOSFET Linearization

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Circuits Devices & Systems Pub Date : 2023-10-31 DOI:10.1049/2023/2265697
N. A. Quadir, Amit Jain, S. Kashfi, Lutfi Albasha, Nasser Qaddoumi
{"title":"The Design and Process Reliability Analysis of Millimeter Wave CMOS Power Amplifier with a Cold Mode MOSFET Linearization","authors":"N. A. Quadir, Amit Jain, S. Kashfi, Lutfi Albasha, Nasser Qaddoumi","doi":"10.1049/2023/2265697","DOIUrl":null,"url":null,"abstract":"A power amplifier design operating at 28 GHz for communication applications is presented in this paper. Analog predistorted technique is used to improve the linearity using a cold mode MOSFET linearizer. The paper reports +19.8 dBm of peak power at the output and power-added efficiency (PAE) of 17% is attained by the designed circuit. The 1-dB compression point linearity was +18.6 dBm. The adjacent channel power ratio (ACPR) simulations were performed for the different communication standards like 802_11n_40M, CDMA, IS-95, and 802_11n_20M. Design specification variations of the amplifier have been analyzed over five process corners and simulations were performed to validate compliance with standards and robustness of the designed circuit. Monte Carlo simulation were performed to assess the performance over statistical variability of PAE and power gain. It is believed that this linearization design and the verifications used are done for the first time on a 65-nm RFCMOS process.","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/2265697","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A power amplifier design operating at 28 GHz for communication applications is presented in this paper. Analog predistorted technique is used to improve the linearity using a cold mode MOSFET linearizer. The paper reports +19.8 dBm of peak power at the output and power-added efficiency (PAE) of 17% is attained by the designed circuit. The 1-dB compression point linearity was +18.6 dBm. The adjacent channel power ratio (ACPR) simulations were performed for the different communication standards like 802_11n_40M, CDMA, IS-95, and 802_11n_20M. Design specification variations of the amplifier have been analyzed over five process corners and simulations were performed to validate compliance with standards and robustness of the designed circuit. Monte Carlo simulation were performed to assess the performance over statistical variability of PAE and power gain. It is believed that this linearization design and the verifications used are done for the first time on a 65-nm RFCMOS process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷模MOSFET线性化毫米波CMOS功率放大器设计及工艺可靠性分析
本文介绍了一种用于通信应用的28ghz功率放大器的设计。采用模拟预失真技术,利用冷模MOSFET线性化器改善线性度。该电路的输出峰值功率为+19.8 dBm,功率附加效率(PAE)为17%。1db压缩点线性度为+18.6 dBm。对802_11n_40M、CDMA、IS-95和802_11n_20M等不同通信标准进行了相邻信道功率比(ACPR)仿真。分析了放大器在五个工艺角上的设计规范变化,并进行了仿真,以验证所设计电路的符合标准和鲁棒性。通过蒙特卡罗模拟来评估PAE和功率增益的统计变异性的性能。据信,这种线性化设计和所使用的验证是首次在65纳米RFCMOS工艺上完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Circuits Devices & Systems
Iet Circuits Devices & Systems 工程技术-工程:电子与电气
CiteScore
3.80
自引率
7.70%
发文量
32
审稿时长
3 months
期刊介绍: IET Circuits, Devices & Systems covers the following topics: Circuit theory and design, circuit analysis and simulation, computer aided design Filters (analogue and switched capacitor) Circuit implementations, cells and architectures for integration including VLSI Testability, fault tolerant design, minimisation of circuits and CAD for VLSI Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs Device and process characterisation, device parameter extraction schemes Mathematics of circuits and systems theory Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers
期刊最新文献
An Efficient Approximate Multiplier with Encoded Partial Products and Inexact Counter for Joint Photographic Experts Group Compression Synthetic Aperture Interferometric Passive Radiometer Imaging to Locate Electromagnetic Leakage From Spacecraft Surface Simultaneous Optimal Allocation of EVCSs and RESs Using an Improved Genetic Method Intelligent Control of Surgical Robot for Telesurgery: An Application to Smart Healthcare Systems A Multiphysical Field Dynamic Behavioral Model of Perpendicular STT-MTJ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1