Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty

Kai Wang, Mehmet Aydemir, Alexandre Jacquillat
{"title":"Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty","authors":"Kai Wang, Mehmet Aydemir, Alexandre Jacquillat","doi":"10.1287/ijoo.2020.0038","DOIUrl":null,"url":null,"abstract":"This paper addresses problems of two-stage optimization under binary uncertainty. We define a scenario-based robust optimization (ScRO) formulation that combines principles of stochastic optimization (by constructing probabilistic scenarios) and robust optimization (by protecting against adversarial perturbations within discrete uncertainty sets). To solve it, we develop a sparse row generation algorithm that iterates between a master problem (which provides a lower bound based on minimal uncertainty sets) and a history-based subproblem (which generates an upper bound and updates minimal uncertainty sets). We generate scenarios and uncertainty sets from element-wise probabilities using a deviation likelihood method or from historical samples using a sample clustering approach. Using public data sets, results suggest that (i) our ScRO formulation outperforms benchmarks based on deterministic, stochastic, and robust optimization; (ii) our deviation likelihood and sample clustering approaches outperform scenario generation baselines; and (iii) our sparse row generation algorithm outperforms off-the-shelf implementation and state-of-the-art cutting plane benchmarks. An application to a real-world ambulance dispatch case study suggests that the proposed modeling and algorithmic approach can reduce the number of late responses by more than 25%. Funding: K. Wang’s research was supported by the National Natural Science Foundation of China [Grants 72322002, 52221005 and 52220105001]","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":"119 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2020.0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses problems of two-stage optimization under binary uncertainty. We define a scenario-based robust optimization (ScRO) formulation that combines principles of stochastic optimization (by constructing probabilistic scenarios) and robust optimization (by protecting against adversarial perturbations within discrete uncertainty sets). To solve it, we develop a sparse row generation algorithm that iterates between a master problem (which provides a lower bound based on minimal uncertainty sets) and a history-based subproblem (which generates an upper bound and updates minimal uncertainty sets). We generate scenarios and uncertainty sets from element-wise probabilities using a deviation likelihood method or from historical samples using a sample clustering approach. Using public data sets, results suggest that (i) our ScRO formulation outperforms benchmarks based on deterministic, stochastic, and robust optimization; (ii) our deviation likelihood and sample clustering approaches outperform scenario generation baselines; and (iii) our sparse row generation algorithm outperforms off-the-shelf implementation and state-of-the-art cutting plane benchmarks. An application to a real-world ambulance dispatch case study suggests that the proposed modeling and algorithmic approach can reduce the number of late responses by more than 25%. Funding: K. Wang’s research was supported by the National Natural Science Foundation of China [Grants 72322002, 52221005 and 52220105001]
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二元不确定性下基于场景的两阶段决策鲁棒优化
本文研究了二元不确定性下的两阶段优化问题。我们定义了一个基于场景的鲁棒优化(ScRO)公式,该公式结合了随机优化(通过构建概率场景)和鲁棒优化(通过防止离散不确定性集中的对抗性扰动)的原理。为了解决这个问题,我们开发了一种稀疏行生成算法,该算法在主问题(基于最小不确定性集提供下界)和基于历史的子问题(生成上界并更新最小不确定性集)之间迭代。我们使用偏差似然方法从元素概率或使用样本聚类方法从历史样本中生成场景和不确定性集。使用公共数据集,结果表明:(i)我们的ScRO公式优于基于确定性、随机和鲁棒优化的基准;(ii)我们的偏差似然和样本聚类方法优于情景生成基线;(iii)我们的稀疏行生成算法优于现成的实现和最先进的切割平面基准。应用于现实世界的救护车调度案例研究表明,所提出的建模和算法方法可以减少延迟响应的数量超过25%。基金资助:王k .国家自然科学基金资助项目[no . 72322002,52221005和52220105001]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1