A feature and optimized RRT algorithm-based assembly path planning method of complex products

Shuai Tao, Duan-Yan Wang, Sheng-Wen Zhang
{"title":"A feature and optimized RRT algorithm-based assembly path planning method of complex products","authors":"Shuai Tao, Duan-Yan Wang, Sheng-Wen Zhang","doi":"10.1177/09544054231203069","DOIUrl":null,"url":null,"abstract":"Currently, manufacturing enterprises lack strict regulations and plans for complex products. The actual assembly path mainly relies on technicians’ experience, leading to an unreasonable assembly path for each part at the workstation, an unreasonable transportation path across the workstation, and the problem of mutual interference between parts. To solve these problems, this paper studies the assembly path planning technology of complex products based on the basic geometric features and assembly sequence information. The complexity of assembly path planning is reduced by converting the assembly problem into a disassembly problem. The disassembly direction and distance of each part are determined based on the geometric feature type of each mating face, and the rapid disassembly of the assembly body is achieved. The Rapidly-exploring Random Trees (RRT) algorithm is optimized by target-tendency and double random tree strategy, and the optimal assembly path of each component is quickly generated by combining the path optimization method and interference checking method. Finally, the effectiveness of the proposed method and the superiority of the path planning algorithm are verified using the cylinder head of a Marine diesel engine (MDE) as a case study.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"15 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231203069","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, manufacturing enterprises lack strict regulations and plans for complex products. The actual assembly path mainly relies on technicians’ experience, leading to an unreasonable assembly path for each part at the workstation, an unreasonable transportation path across the workstation, and the problem of mutual interference between parts. To solve these problems, this paper studies the assembly path planning technology of complex products based on the basic geometric features and assembly sequence information. The complexity of assembly path planning is reduced by converting the assembly problem into a disassembly problem. The disassembly direction and distance of each part are determined based on the geometric feature type of each mating face, and the rapid disassembly of the assembly body is achieved. The Rapidly-exploring Random Trees (RRT) algorithm is optimized by target-tendency and double random tree strategy, and the optimal assembly path of each component is quickly generated by combining the path optimization method and interference checking method. Finally, the effectiveness of the proposed method and the superiority of the path planning algorithm are verified using the cylinder head of a Marine diesel engine (MDE) as a case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于特征与优化RRT算法的复杂产品装配路径规划方法
目前,制造企业对复杂产品缺乏严格的规定和规划。实际的装配路径主要依靠技术人员的经验,导致工作站各个零件的装配路径不合理,跨工作站的运输路径不合理,零件之间存在相互干扰的问题。针对这些问题,本文研究了基于基本几何特征和装配序列信息的复杂产品装配路径规划技术。通过将装配问题转化为拆卸问题,降低了装配路径规划的复杂性。根据各配合面几何特征类型确定各零件的拆卸方向和距离,实现装配体的快速拆卸。采用目标倾向和双随机树策略对快速探索随机树(RRT)算法进行优化,并结合路径优化方法和干涉检查方法快速生成各部件的最优装配路径。最后,以某型船用柴油机气缸盖为例,验证了所提方法的有效性和路径规划算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
30.80%
发文量
167
审稿时长
5.1 months
期刊介绍: Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed. Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing. Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.
期刊最新文献
Digital twins for hand gesture-guided human-robot collaboration systems Optimal design of the response surface for the root cutting of a hydroponic lettuce harvesting tool Comparison of joining hole making methods for fiber reinforced FDM 3D printing parts Thermal error compensation for a fluid-cooling ball-screw feed system Modeling and balancing of parallel U-shaped assembly line based on improved genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1