Micrometre-sized ice particles for planetary science experiments – CoPhyLab cryogenic granular sample production and storage

C Kreuzig, D Bischoff, N S Molinski, J N Brecher, A Kovalev, G Meier, J Oesert, S N Gorb, B Gundlach, J Blum
{"title":"Micrometre-sized ice particles for planetary science experiments – CoPhyLab cryogenic granular sample production and storage","authors":"C Kreuzig, D Bischoff, N S Molinski, J N Brecher, A Kovalev, G Meier, J Oesert, S N Gorb, B Gundlach, J Blum","doi":"10.1093/rasti/rzad049","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we present a comprehensive investigation into the production, characteristics, handling, and storage of micrometre-sized granular water-ice. The focus of this research is to provide well-characterized analogue samples for laboratory experiments simulating icy bodies found in the Solar System, particularly comets. These experiments are conducted as part of the CoPhyLab (Comet Physics Laboratory) project, an international collaboration aimed at studying cometary processes to gain insights into the underlying physics of cometary activity. Granular water-ice, along with other less abundant but more volatile ices, plays a crucial role in the ejection of gas and dust particles when comets approach the Sun. To facilitate large-scale laboratory experiments, an ice-particle machine was developed, capable of autonomously producing sufficient quantities of granular water-ice. Additionally, a cryogenic desiccator was designed to remove any residual moisture from the ice using liquid nitrogen. The resulting ice particles can be mixed with other materials and stored within the desiccator or a cryogenic transport can, enabling easy shipment to any laboratory, including via air transport. To analyse the ice grains, cryogenic scanning electron microscopy was employed to determine their particle shape and size-frequency distribution. These analyses contribute to a better understanding of the properties of granular water-ice and its behavior under cryogenic conditions, supporting the objectives of the CoPhyLab project.","PeriodicalId":500957,"journal":{"name":"RAS Techniques and Instruments","volume":"33 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rasti/rzad049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this work, we present a comprehensive investigation into the production, characteristics, handling, and storage of micrometre-sized granular water-ice. The focus of this research is to provide well-characterized analogue samples for laboratory experiments simulating icy bodies found in the Solar System, particularly comets. These experiments are conducted as part of the CoPhyLab (Comet Physics Laboratory) project, an international collaboration aimed at studying cometary processes to gain insights into the underlying physics of cometary activity. Granular water-ice, along with other less abundant but more volatile ices, plays a crucial role in the ejection of gas and dust particles when comets approach the Sun. To facilitate large-scale laboratory experiments, an ice-particle machine was developed, capable of autonomously producing sufficient quantities of granular water-ice. Additionally, a cryogenic desiccator was designed to remove any residual moisture from the ice using liquid nitrogen. The resulting ice particles can be mixed with other materials and stored within the desiccator or a cryogenic transport can, enabling easy shipment to any laboratory, including via air transport. To analyse the ice grains, cryogenic scanning electron microscopy was employed to determine their particle shape and size-frequency distribution. These analyses contribute to a better understanding of the properties of granular water-ice and its behavior under cryogenic conditions, supporting the objectives of the CoPhyLab project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行星科学实验用微米级冰粒。CoPhyLab低温颗粒样品的生产和储存
摘要在这项工作中,我们对微米级颗粒水冰的生产、特性、处理和储存进行了全面的研究。本研究的重点是为模拟太阳系中发现的冰体,特别是彗星的实验室实验提供具有良好特征的模拟样本。这些实验是CoPhyLab(彗星物理实验室)项目的一部分,该项目是一个国际合作项目,旨在研究彗星的过程,以深入了解彗星活动的潜在物理原理。颗粒状的水冰,以及其他数量较少但挥发性更强的冰,在彗星接近太阳时,对气体和尘埃粒子的喷射起着至关重要的作用。为了便于大规模的实验室实验,研制了一种能够自主生产足够数量的颗粒水冰的冰粒机。此外,设计了一个低温干燥器,使用液氮去除冰中残留的水分。由此产生的冰颗粒可以与其他材料混合并存储在干燥器或低温运输罐中,以便于运输到任何实验室,包括通过航空运输。为了分析冰粒,采用低温扫描电镜测定了冰粒的形状和尺寸-频率分布。这些分析有助于更好地了解颗粒水冰的性质及其在低温条件下的行为,支持CoPhyLab项目的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The exosphere of Mars can be tracked by a high-spectral resolution telescope, such as the Line Emission Mapper Training a convolutional neural network for real-bogus classification in the ATLAS survey Exoplanet host star classification: Multi-Objective Optimisation of incomplete stellar abundance data PTFE as a viable sealing material for lightweight mass spectrometry ovens in dusty extraterrestrial environments PTFE as a viable sealing material for lightweight mass spectrometry ovens in dusty extraterrestrial environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1