Description and evaluation of the new UM–UKCA (vn11.0) Double Extended Stratospheric–Tropospheric (DEST vn1.0) scheme for comprehensive modelling of halogen chemistry in the stratosphere
Ewa M. Bednarz, Ryan Hossaini, N. Luke Abraham, Martyn P. Chipperfield
{"title":"Description and evaluation of the new UM–UKCA (vn11.0) Double Extended Stratospheric–Tropospheric (DEST vn1.0) scheme for comprehensive modelling of halogen chemistry in the stratosphere","authors":"Ewa M. Bednarz, Ryan Hossaini, N. Luke Abraham, Martyn P. Chipperfield","doi":"10.5194/gmd-16-6187-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The paper describes the development and performance of the Double Extended Stratospheric–Tropospheric (DEST vn1.0) chemistry scheme, which forms a part of the Met Office's Unified Model coupled to the United Kingdom Chemistry and Aerosol (UM–UKCA) chemistry–climate model, which is the atmospheric composition model of the United Kingdom Earth System Model (UKESM). The scheme extends the standard Stratospheric–Tropospheric chemistry scheme (StratTrop) by including a range of important updates to the halogen chemistry. These allow process-oriented studies of stratospheric ozone depletion and recovery, including the impacts from both controlled long-lived ozone-depleting substances (ODSs) and emerging issues around uncontrolled very short-lived substances (VSLS). The main updates in DEST are (i) an explicit treatment of 14 of the most important long-lived ODSs; (ii) an inclusion of brominated VSLS (Br-VSLS) emissions and chemistry; and (iii) an inclusion of chlorinated VSLS (Cl-VSLS) emissions/LBCs (lower boundary conditions) and chemistry. We evaluate the scheme's performance by comparing DEST simulations against analogous runs made with the standard StratTrop scheme and against observational and reanalysis datasets. Overall, our scheme addresses some significant shortcomings in the representation of atmospheric halogens in the standard StratTrop scheme and will thus be particularly relevant for studies of ozone layer recovery and processes affecting it, in support of future World Meteorological Organization (WMO) Ozone Assessment Reports.","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":"2 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gmd-16-6187-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. The paper describes the development and performance of the Double Extended Stratospheric–Tropospheric (DEST vn1.0) chemistry scheme, which forms a part of the Met Office's Unified Model coupled to the United Kingdom Chemistry and Aerosol (UM–UKCA) chemistry–climate model, which is the atmospheric composition model of the United Kingdom Earth System Model (UKESM). The scheme extends the standard Stratospheric–Tropospheric chemistry scheme (StratTrop) by including a range of important updates to the halogen chemistry. These allow process-oriented studies of stratospheric ozone depletion and recovery, including the impacts from both controlled long-lived ozone-depleting substances (ODSs) and emerging issues around uncontrolled very short-lived substances (VSLS). The main updates in DEST are (i) an explicit treatment of 14 of the most important long-lived ODSs; (ii) an inclusion of brominated VSLS (Br-VSLS) emissions and chemistry; and (iii) an inclusion of chlorinated VSLS (Cl-VSLS) emissions/LBCs (lower boundary conditions) and chemistry. We evaluate the scheme's performance by comparing DEST simulations against analogous runs made with the standard StratTrop scheme and against observational and reanalysis datasets. Overall, our scheme addresses some significant shortcomings in the representation of atmospheric halogens in the standard StratTrop scheme and will thus be particularly relevant for studies of ozone layer recovery and processes affecting it, in support of future World Meteorological Organization (WMO) Ozone Assessment Reports.
期刊介绍:
Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication:
* geoscientific model descriptions, from statistical models to box models to GCMs;
* development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results;
* new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data;
* papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data;
* model experiment descriptions, including experimental details and project protocols;
* full evaluations of previously published models.