{"title":"ProVe: A pipeline for automated provenance verification of knowledge graphs against textual sources","authors":"Gabriel Amaral, Odinaldo Rodrigues, Elena Simperl","doi":"10.3233/sw-233467","DOIUrl":null,"url":null,"abstract":"Knowledge Graphs are repositories of information that gather data from a multitude of domains and sources in the form of semantic triples, serving as a source of structured data for various crucial applications in the modern web landscape, from Wikipedia infoboxes to search engines. Such graphs mainly serve as secondary sources of information and depend on well-documented and verifiable provenance to ensure their trustworthiness and usability. However, their ability to systematically assess and assure the quality of this provenance, most crucially whether it properly supports the graph’s information, relies mainly on manual processes that do not scale with size. ProVe aims at remedying this, consisting of a pipelined approach that automatically verifies whether a Knowledge Graph triple is supported by text extracted from its documented provenance. ProVe is intended to assist information curators and consists of four main steps involving rule-based methods and machine learning models: text extraction, triple verbalisation, sentence selection, and claim verification. ProVe is evaluated on a Wikidata dataset, achieving promising results overall and excellent performance on the binary classification task of detecting support from provenance, with 87.5 % accuracy and 82.9 % F1-macro on text-rich sources. The evaluation data and scripts used in this paper are available in GitHub and Figshare.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"60 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sw-233467","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge Graphs are repositories of information that gather data from a multitude of domains and sources in the form of semantic triples, serving as a source of structured data for various crucial applications in the modern web landscape, from Wikipedia infoboxes to search engines. Such graphs mainly serve as secondary sources of information and depend on well-documented and verifiable provenance to ensure their trustworthiness and usability. However, their ability to systematically assess and assure the quality of this provenance, most crucially whether it properly supports the graph’s information, relies mainly on manual processes that do not scale with size. ProVe aims at remedying this, consisting of a pipelined approach that automatically verifies whether a Knowledge Graph triple is supported by text extracted from its documented provenance. ProVe is intended to assist information curators and consists of four main steps involving rule-based methods and machine learning models: text extraction, triple verbalisation, sentence selection, and claim verification. ProVe is evaluated on a Wikidata dataset, achieving promising results overall and excellent performance on the binary classification task of detecting support from provenance, with 87.5 % accuracy and 82.9 % F1-macro on text-rich sources. The evaluation data and scripts used in this paper are available in GitHub and Figshare.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.