{"title":"The hybrid pulse amplitude width modulation scheme: high efficiency technique for dimmable VLC systems","authors":"Mohamed El Jbari, Mohamed Moussaoui","doi":"10.1515/joc-2023-0101","DOIUrl":null,"url":null,"abstract":"Abstract Visible-light communications (VLC) is an environmentally friendly optical wireless communication (OWC) technology that operates in the 400–800 THz frequency band. It is currently a critical technology for 5G and 6G wireless indoor applications due to its high data rates, low latency, and superior reliability. Intensity modulated direct detection (IM/DD) is widely used in VLC systems. A channel modulation scheme is designed using L-level pulse modulation techniques such as on–off keying (OOK), amplitude modulation (PAM), position modulation (PPM), and the width modulation (PWM). We introduce a novel hybrid modulation scheme n-M-PAWM based on both PAM and PWM schemes to improve throughput and significantly increase power and spectrum efficiency in VLC communication systems. The performance of our proposed hybrid n-M-PAWM scheme is studied in several aspects, including the number of transmitted bits per symbol, average BER, information rate ratio (IRR), PAPR, bandwidth, and power requirement. In an extremely noisy VLC system, the proposed 2-M-PAWM modulation outperforms both PPWM and PAPM modulation schemes due to its better BER performances. Additionally, we examine the performance of the VLC system in terms of spectral efficiency (SE) using our proposed PAWM-based dimming control system by varying the number of pulses transmitted during one symbol period. We demonstrate through simulation results that our PAWM-based dimming control system performs significantly better compared to the other pulse modulation schemes. All results of this research show that our proposed hybrid PAWM modulation scheme has high potential for VLC technology in indoor and noisy environments.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Visible-light communications (VLC) is an environmentally friendly optical wireless communication (OWC) technology that operates in the 400–800 THz frequency band. It is currently a critical technology for 5G and 6G wireless indoor applications due to its high data rates, low latency, and superior reliability. Intensity modulated direct detection (IM/DD) is widely used in VLC systems. A channel modulation scheme is designed using L-level pulse modulation techniques such as on–off keying (OOK), amplitude modulation (PAM), position modulation (PPM), and the width modulation (PWM). We introduce a novel hybrid modulation scheme n-M-PAWM based on both PAM and PWM schemes to improve throughput and significantly increase power and spectrum efficiency in VLC communication systems. The performance of our proposed hybrid n-M-PAWM scheme is studied in several aspects, including the number of transmitted bits per symbol, average BER, information rate ratio (IRR), PAPR, bandwidth, and power requirement. In an extremely noisy VLC system, the proposed 2-M-PAWM modulation outperforms both PPWM and PAPM modulation schemes due to its better BER performances. Additionally, we examine the performance of the VLC system in terms of spectral efficiency (SE) using our proposed PAWM-based dimming control system by varying the number of pulses transmitted during one symbol period. We demonstrate through simulation results that our PAWM-based dimming control system performs significantly better compared to the other pulse modulation schemes. All results of this research show that our proposed hybrid PAWM modulation scheme has high potential for VLC technology in indoor and noisy environments.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications