Holocene hydroclimate and dust activity, as reconstructed from the sediments of Lake Bayanchagan, on the northern margin of the East Asian summer monsoon
Wubiao Li, Wenying Jiang, Shiling Yang, Jie Lin, Yujie Wang
{"title":"Holocene hydroclimate and dust activity, as reconstructed from the sediments of Lake Bayanchagan, on the northern margin of the East Asian summer monsoon","authors":"Wubiao Li, Wenying Jiang, Shiling Yang, Jie Lin, Yujie Wang","doi":"10.1017/qua.2023.57","DOIUrl":null,"url":null,"abstract":"Abstract The sediments of closed-basin lakes on the margin of the East Asian summer monsoon (EASM) are valuable archives of past changes in hydroclimate and dust activity and thus potentially can help us to understand future climate changes. We present high-resolution, well-dated records of the grain size and carbonate mineralogy from Lake Bayanchagan, northern China, spanning the last 11.5 ka. Grain-size endmember (EM) analysis distinguished four EMs, each linked to different sediment transport processes. EM1 (0.4–0.6 μm) and EM3 (14–102 μm) reflect the strength of regional dust activity, whereas EM2 (1.3–31 μm) represents variations in local hydrodynamic conditions related to lake-level changes and EM4 (68–500 μm) is associated with local dust activity. Our results show that a high lake level and weakened dust activity occurred during 10–5.8 ka, as indicated by increased EM2 and decreased EM3, respectively. After 5.8 ka, EM2 decreased as the three other EMs increased, and dolomite appeared in the sediments while calcite decreased—indicating both a decline in lake level and strengthened dust activity. The fluctuations in lake level and dust activity are in good agreement with precipitation variations reconstructed from other records, which are in turn correlated to movement of the EASM rainfall belt, in response to temperature changes.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"11 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qua.2023.57","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The sediments of closed-basin lakes on the margin of the East Asian summer monsoon (EASM) are valuable archives of past changes in hydroclimate and dust activity and thus potentially can help us to understand future climate changes. We present high-resolution, well-dated records of the grain size and carbonate mineralogy from Lake Bayanchagan, northern China, spanning the last 11.5 ka. Grain-size endmember (EM) analysis distinguished four EMs, each linked to different sediment transport processes. EM1 (0.4–0.6 μm) and EM3 (14–102 μm) reflect the strength of regional dust activity, whereas EM2 (1.3–31 μm) represents variations in local hydrodynamic conditions related to lake-level changes and EM4 (68–500 μm) is associated with local dust activity. Our results show that a high lake level and weakened dust activity occurred during 10–5.8 ka, as indicated by increased EM2 and decreased EM3, respectively. After 5.8 ka, EM2 decreased as the three other EMs increased, and dolomite appeared in the sediments while calcite decreased—indicating both a decline in lake level and strengthened dust activity. The fluctuations in lake level and dust activity are in good agreement with precipitation variations reconstructed from other records, which are in turn correlated to movement of the EASM rainfall belt, in response to temperature changes.
期刊介绍:
Quaternary Research is an international journal devoted to the advancement of the interdisciplinary understanding of the Quaternary Period. We aim to publish articles of broad interest with relevance to more than one discipline, and that constitute a significant new contribution to Quaternary science. The journal’s scope is global, building on its nearly 50-year history in advancing the understanding of earth and human history through interdisciplinary study of the last 2.6 million years.