{"title":"Large herbivore δ18O as a proxy for aridity in the South African winter and year-round rainfall zone","authors":"Julie Luyt, J. Tyler Faith, Judith Sealy","doi":"10.1017/qua.2024.21","DOIUrl":null,"url":null,"abstract":"<p>This study explores patterning in δ<span>18</span>O values of tooth enamel in contemporary African herbivores from mainly C<span>3</span>-dominated ecosystems. Evapotranspiration causes plants to lose H<span>2</span><span>16</span>O to a greater extent than H<span>2</span><span>18</span>O, leaving leaves enriched in <span>18</span>O. In eastern Africa, ES species (evaporation-sensitive species: those obtaining water from food) tend to have more positive δ<span>18</span>O<span>enamel</span> values than EI species (evaporation-insensitive species: those heavily dependent on drinking water); the magnitude of the difference increases with increasing aridity. We find the same pattern applies in the winter and year-round rainfall region of southern Africa, allowing us to use δ<span>18</span>O<span>enamel</span> in fossil animals to examine paleo-aridity. We apply this approach to infer aridity at Quaternary fossil assemblages from present-day winter and year-round rainfall zones, including Elandsfontein (ca. 1–0.6 Ma), Hoedjiespunt (ca. 300–130 ka), and Nelson Bay Cave (23.5–3 ka). This analysis suggests that (1) at various times during the Pleistocene, Elandsfontein and Hoedjiespunt environments were wetter than last glacial maximum (LGM) to Holocene environments at Nelson Bay Cave (year-round rainfall zone); and (2) considered alongside other evidence from the year-round rainfall zone, wetter conditions across the Pleistocene–Holocene transition at Nelson Bay Cave suggests that climate changes at near-coastal sites may be out of phase with the adjacent interior.</p>","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"30 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/qua.2024.21","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores patterning in δ18O values of tooth enamel in contemporary African herbivores from mainly C3-dominated ecosystems. Evapotranspiration causes plants to lose H216O to a greater extent than H218O, leaving leaves enriched in 18O. In eastern Africa, ES species (evaporation-sensitive species: those obtaining water from food) tend to have more positive δ18Oenamel values than EI species (evaporation-insensitive species: those heavily dependent on drinking water); the magnitude of the difference increases with increasing aridity. We find the same pattern applies in the winter and year-round rainfall region of southern Africa, allowing us to use δ18Oenamel in fossil animals to examine paleo-aridity. We apply this approach to infer aridity at Quaternary fossil assemblages from present-day winter and year-round rainfall zones, including Elandsfontein (ca. 1–0.6 Ma), Hoedjiespunt (ca. 300–130 ka), and Nelson Bay Cave (23.5–3 ka). This analysis suggests that (1) at various times during the Pleistocene, Elandsfontein and Hoedjiespunt environments were wetter than last glacial maximum (LGM) to Holocene environments at Nelson Bay Cave (year-round rainfall zone); and (2) considered alongside other evidence from the year-round rainfall zone, wetter conditions across the Pleistocene–Holocene transition at Nelson Bay Cave suggests that climate changes at near-coastal sites may be out of phase with the adjacent interior.
期刊介绍:
Quaternary Research is an international journal devoted to the advancement of the interdisciplinary understanding of the Quaternary Period. We aim to publish articles of broad interest with relevance to more than one discipline, and that constitute a significant new contribution to Quaternary science. The journal’s scope is global, building on its nearly 50-year history in advancing the understanding of earth and human history through interdisciplinary study of the last 2.6 million years.