{"title":"Efficient Model-free Subsampling Method for Massive Data","authors":"Zheng Zhou, Zebin Yang, Aijun Zhang, Yongdao Zhou","doi":"10.1080/00401706.2023.2271091","DOIUrl":null,"url":null,"abstract":"AbstractSubsampling plays a crucial role in tackling problems associated with the storage and statistical learning of massive datasets. However, most existing subsampling methods are model-based, which means their performances can drop significantly when the underlying model is misspecified. Such an issue calls for model-free subsampling methods that are robust under diverse model specifications. Recently, several model-free subsampling methods are developed. However, the computing time of these methods grows explosively with the sample size, making them impractical for handling massive data. In this paper, an efficient model-free subsampling method is proposed, which segments the original data into some regular data blocks and obtains subsamples from each data block by the data-driven subsampling method. Compared with existing model-free subsampling methods, the proposed method has a significant speed advantage and performs more robustly for datasets with complex underlying distributions. As demonstrated in simulation experiments, the proposed method is an order of magnitude faster than other commonly used model-free subsampling methods when the sample size of the original dataset reaches the order of 107. Moreover, simulation experiments and case studies show that the proposed method is more robust than other model-free subsampling methods under diverse model specifications and subsample sizes.Keywords: Big data subsamplingModel robustnessParallel computingUniform designsDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00401706.2023.2271091","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractSubsampling plays a crucial role in tackling problems associated with the storage and statistical learning of massive datasets. However, most existing subsampling methods are model-based, which means their performances can drop significantly when the underlying model is misspecified. Such an issue calls for model-free subsampling methods that are robust under diverse model specifications. Recently, several model-free subsampling methods are developed. However, the computing time of these methods grows explosively with the sample size, making them impractical for handling massive data. In this paper, an efficient model-free subsampling method is proposed, which segments the original data into some regular data blocks and obtains subsamples from each data block by the data-driven subsampling method. Compared with existing model-free subsampling methods, the proposed method has a significant speed advantage and performs more robustly for datasets with complex underlying distributions. As demonstrated in simulation experiments, the proposed method is an order of magnitude faster than other commonly used model-free subsampling methods when the sample size of the original dataset reaches the order of 107. Moreover, simulation experiments and case studies show that the proposed method is more robust than other model-free subsampling methods under diverse model specifications and subsample sizes.Keywords: Big data subsamplingModel robustnessParallel computingUniform designsDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
期刊介绍:
Technometrics is a Journal of Statistics for the Physical, Chemical, and Engineering Sciences, and is published Quarterly by the American Society for Quality and the American Statistical Association.Since its inception in 1959, the mission of Technometrics has been to contribute to the development and use of statistical methods in the physical, chemical, and engineering sciences.