首页 > 最新文献

Technometrics最新文献

英文 中文
Spatiotemporal Interactive Modeling of Event-based Dynamic Networks. 基于事件的动态网络的时空交互建模。
IF 2.5 3区 工程技术 Q1 STATISTICS & PROBABILITY Pub Date : 2025-01-01 Epub Date: 2025-01-30 DOI: 10.1080/00401706.2024.2441679
Di Wang, Xiaochen Xian, Haidong Li

Event-based dynamic networks exist in a wide range of areas, including traffic, biological, and social applications. Such a network consists of interaction event sequences over different locations, where each event may trigger or influence a series of subsequent events under certain intrinsic spatial structure because of their geographical and semantic proximities. Such influence patterns and triggering motivations reflect the nature and semantics of human/object behaviors in the network. Thus, modeling event-based dynamic networks properly is critically important. This paper proposes a spatiotemporal interactive Hawkes process (SIHP) that describes how a series of events occurs and models the rate of interaction events between any pair of nodes on the network explicitly with the information from related historical events as well as geographical and semantic neighboring nodes. The proposed SIHP can not only learn the patterns of influence from historical interaction events on later ones, but can also understand the network dynamics by fully considering spatial structure knowledge. Specifically, we incorporate prior knowledge of spatial structure as a graph and design graph regularization in the SIHP, where model parameters are estimated by designing an alternating direction method of multiplier (ADMM) framework. Numerical experiments and a real case study on New York yellow taxi data validate the effectiveness of the proposed method.

基于事件的动态网络存在于广泛的领域,包括交通、生物和社会应用。这种网络由不同位置上的相互作用事件序列组成,其中每个事件由于其地理和语义上的接近性,可能在一定的内在空间结构下触发或影响一系列后续事件。这种影响模式和触发动机反映了网络中人/物行为的性质和语义。因此,正确地建模基于事件的动态网络是至关重要的。本文提出了一种时空交互霍克斯过程(SIHP),该过程描述了一系列事件的发生过程,并利用相关历史事件以及地理和语义相邻节点的信息对网络上任意对节点之间的交互事件速率进行了显式建模。该方法不仅可以学习历史相互作用事件对后续相互作用事件的影响模式,而且可以充分考虑空间结构知识来理解网络动态。具体而言,我们将空间结构的先验知识作为图,并在SIHP中设计图正则化,其中通过设计乘法器的交替方向方法(ADMM)框架来估计模型参数。数值实验和纽约出租车实测数据验证了该方法的有效性。
{"title":"Spatiotemporal Interactive Modeling of Event-based Dynamic Networks.","authors":"Di Wang, Xiaochen Xian, Haidong Li","doi":"10.1080/00401706.2024.2441679","DOIUrl":"10.1080/00401706.2024.2441679","url":null,"abstract":"<p><p>Event-based dynamic networks exist in a wide range of areas, including traffic, biological, and social applications. Such a network consists of interaction event sequences over different locations, where each event may trigger or influence a series of subsequent events under certain intrinsic spatial structure because of their geographical and semantic proximities. Such influence patterns and triggering motivations reflect the nature and semantics of human/object behaviors in the network. Thus, modeling event-based dynamic networks properly is critically important. This paper proposes a spatiotemporal interactive Hawkes process (SIHP) that describes how a series of events occurs and models the rate of interaction events between any pair of nodes on the network explicitly with the information from related historical events as well as geographical and semantic neighboring nodes. The proposed SIHP can not only learn the patterns of influence from historical interaction events on later ones, but can also understand the network dynamics by fully considering spatial structure knowledge. Specifically, we incorporate prior knowledge of spatial structure as a graph and design graph regularization in the SIHP, where model parameters are estimated by designing an alternating direction method of multiplier (ADMM) framework. Numerical experiments and a real case study on New York yellow taxi data validate the effectiveness of the proposed method.</p>","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"67 2","pages":"293-310"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12711312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145782826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Model Calibration and Sensitivity Analysis for Oscillating Biological Experiments. 生物振荡实验贝叶斯模型标定及灵敏度分析。
IF 2.5 3区 工程技术 Q1 STATISTICS & PROBABILITY Pub Date : 2025-01-01 Epub Date: 2025-02-03 DOI: 10.1080/00401706.2024.2444310
Youngdeok Hwang, Hang J Kim, Won Chang, Christian Hong, Steven N MacEachern

Understanding the oscillating behaviors that govern organisms' internal biological processes requires interdisciplinary efforts combining both biological and computer experiments, as the latter can complement the former by simulating perturbed conditions with higher resolution. Harmonizing the two types of experiment, however, poses significant statistical challenges due to identifiability issues, numerical instability, and ill behavior in high dimension. This article devises a new Bayesian calibration framework for oscillating biochemical models. The proposed Bayesian model is estimated relying on an advanced Markov chain Monte Carlo (MCMC) technique which can efficiently infer the parameter values that match the simulated and observed oscillatory processes. Also proposed is an approach to sensitivity analysis based on the intervention posterior. This approach measures the influence of individual parameters on the target process by using the obtained MCMC samples as a computational tool. The proposed framework is illustrated with circadian oscillations observed in a filamentous fungus, Neurospora crassa.

理解控制生物体内部生物过程的振荡行为需要跨学科的努力,将生物学和计算机实验结合起来,因为后者可以通过以更高的分辨率模拟扰动条件来补充前者。然而,由于可识别性问题、数值不稳定性和高维中的不良行为,协调这两种类型的实验提出了重大的统计挑战。本文设计了一个新的生化振荡模型贝叶斯校准框架。该贝叶斯模型的估计依赖于一种先进的马尔可夫链蒙特卡罗(MCMC)技术,该技术可以有效地推断出与模拟和观测的振荡过程相匹配的参数值。同时提出了一种基于干预后验的敏感性分析方法。该方法通过使用获得的MCMC样本作为计算工具来测量单个参数对目标过程的影响。提出的框架说明了昼夜节律振荡观察丝状真菌,神经孢子草。
{"title":"Bayesian Model Calibration and Sensitivity Analysis for Oscillating Biological Experiments.","authors":"Youngdeok Hwang, Hang J Kim, Won Chang, Christian Hong, Steven N MacEachern","doi":"10.1080/00401706.2024.2444310","DOIUrl":"10.1080/00401706.2024.2444310","url":null,"abstract":"<p><p>Understanding the oscillating behaviors that govern organisms' internal biological processes requires interdisciplinary efforts combining both biological and computer experiments, as the latter can complement the former by simulating perturbed conditions with higher resolution. Harmonizing the two types of experiment, however, poses significant statistical challenges due to identifiability issues, numerical instability, and ill behavior in high dimension. This article devises a new Bayesian calibration framework for oscillating biochemical models. The proposed Bayesian model is estimated relying on an advanced Markov chain Monte Carlo (MCMC) technique which can efficiently infer the parameter values that match the simulated and observed oscillatory processes. Also proposed is an approach to sensitivity analysis based on the intervention posterior. This approach measures the influence of individual parameters on the target process by using the obtained MCMC samples as a computational tool. The proposed framework is illustrated with circadian oscillations observed in a filamentous fungus, <i>Neurospora crassa</i>.</p>","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"67 2","pages":"333-343"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12720118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Note on the Equivalence of Orthogonalizing EM and Proximal Gradient Descent. 关于正交化EM与近端梯度下降的等价性的注记。
IF 2.5 3区 工程技术 Q1 STATISTICS & PROBABILITY Pub Date : 2025-01-01 Epub Date: 2024-12-23 DOI: 10.1080/00401706.2024.2430204
James Yang, Trevor Hastie

Xiong et al. (2016) develop a method called orthogonalizing EM (OEM) to solve penalized regression problems for tall data. While OEM is developed in the context of the EM algorithm, we show that it is, in fact, an instance of proximal gradient descent, a popular first-order convex optimization algorithm.

Xiong等人(2016)开发了一种称为正交化EM (OEM)的方法来解决高数据的惩罚回归问题。虽然OEM是在EM算法的背景下开发的,但我们表明它实际上是近端梯度下降的一个实例,这是一种流行的一阶凸优化算法。
{"title":"Note on the Equivalence of Orthogonalizing EM and Proximal Gradient Descent.","authors":"James Yang, Trevor Hastie","doi":"10.1080/00401706.2024.2430204","DOIUrl":"10.1080/00401706.2024.2430204","url":null,"abstract":"<p><p>Xiong et al. (2016) develop a method called orthogonalizing EM (OEM) to solve penalized regression problems for tall data. While OEM is developed in the context of the EM algorithm, we show that it is, in fact, an instance of proximal gradient descent, a popular first-order convex optimization algorithm.</p>","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"67 2","pages":"267-269"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144249688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian sequential design of computer experiments for quantile set inversion 用于量子集合反演的计算机实验的贝叶斯序列设计
IF 2.5 3区 工程技术 Q1 STATISTICS & PROBABILITY Pub Date : 2024-08-23 DOI: 10.1080/00401706.2024.2394475
Romain Ait Abdelmalek-Lomenech, Julien Bect, Vincent Chabridon, Emmanuel Vazquez
We consider an unknown multivariate function representing a system—such as a complex numerical simulator—taking both deterministic and uncertain inputs. Our objective is to estimate the set of dete...
我们考虑的是一个未知的多元函数,它代表了一个同时接受确定性和不确定性输入的系统,例如一个复杂的数值模拟器。我们的目标是估算出一组确定和不确定的输入。
{"title":"Bayesian sequential design of computer experiments for quantile set inversion","authors":"Romain Ait Abdelmalek-Lomenech, Julien Bect, Vincent Chabridon, Emmanuel Vazquez","doi":"10.1080/00401706.2024.2394475","DOIUrl":"https://doi.org/10.1080/00401706.2024.2394475","url":null,"abstract":"We consider an unknown multivariate function representing a system—such as a complex numerical simulator—taking both deterministic and uncertain inputs. Our objective is to estimate the set of dete...","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"8 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical Modeling of Occupant Behavior 乘员行为统计建模
IF 2.5 3区 工程技术 Q1 STATISTICS & PROBABILITY Pub Date : 2024-08-07 DOI: 10.1080/00401706.2024.2374186
Stan Lipovetsky
Published in Technometrics (Vol. 66, No. 3, 2024)
发表于《技术计量学》(第 66 卷第 3 期,2024 年)
{"title":"Statistical Modeling of Occupant Behavior","authors":"Stan Lipovetsky","doi":"10.1080/00401706.2024.2374186","DOIUrl":"https://doi.org/10.1080/00401706.2024.2374186","url":null,"abstract":"Published in Technometrics (Vol. 66, No. 3, 2024)","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"84 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applied Machine Learning Using mlr3 in R 在 R 中使用 mlr3 进行应用机器学习
IF 2.5 3区 工程技术 Q1 STATISTICS & PROBABILITY Pub Date : 2024-08-07 DOI: 10.1080/00401706.2024.2374183
Stan Lipovetsky
Published in Technometrics (Vol. 66, No. 3, 2024)
发表于《技术计量学》(第 66 卷第 3 期,2024 年)
{"title":"Applied Machine Learning Using mlr3 in R","authors":"Stan Lipovetsky","doi":"10.1080/00401706.2024.2374183","DOIUrl":"https://doi.org/10.1080/00401706.2024.2374183","url":null,"abstract":"Published in Technometrics (Vol. 66, No. 3, 2024)","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"28 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Planetary Atom: A Fictional Account of George Adolphus Schott, the Forgotten Physicist 行星原子被遗忘的物理学家乔治-阿道夫-肖特的虚构故事
IF 2.5 3区 工程技术 Q1 STATISTICS & PROBABILITY Pub Date : 2024-08-07 DOI: 10.1080/00401706.2024.2374189
Stan Lipovetsky
Published in Technometrics (Vol. 66, No. 3, 2024)
发表于《技术计量学》(第 66 卷第 3 期,2024 年)
{"title":"The Planetary Atom: A Fictional Account of George Adolphus Schott, the Forgotten Physicist","authors":"Stan Lipovetsky","doi":"10.1080/00401706.2024.2374189","DOIUrl":"https://doi.org/10.1080/00401706.2024.2374189","url":null,"abstract":"Published in Technometrics (Vol. 66, No. 3, 2024)","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"122 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data Science and Machine Learning for Non-Programmers Using SAS Enterprise Miner, 1st ed. 非程序员使用 SAS Enterprise Miner 进行数据科学和机器学习》,第 1 版。
IF 2.5 3区 工程技术 Q1 STATISTICS & PROBABILITY Pub Date : 2024-08-07 DOI: 10.1080/00401706.2024.2374190
Egi Rahmansyah, Nur Hidayah, Megawati Zein Waliulu, Hawinda Restu Putri
Published in Technometrics (Vol. 66, No. 3, 2024)
发表于《技术计量学》(第 66 卷第 3 期,2024 年)
{"title":"Data Science and Machine Learning for Non-Programmers Using SAS Enterprise Miner, 1st ed.","authors":"Egi Rahmansyah, Nur Hidayah, Megawati Zein Waliulu, Hawinda Restu Putri","doi":"10.1080/00401706.2024.2374190","DOIUrl":"https://doi.org/10.1080/00401706.2024.2374190","url":null,"abstract":"Published in Technometrics (Vol. 66, No. 3, 2024)","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"22 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical Inference Based on Kernel Distribution Function Estimators 基于核分布函数估计器的统计推断
IF 2.5 3区 工程技术 Q1 STATISTICS & PROBABILITY Pub Date : 2024-08-07 DOI: 10.1080/00401706.2024.2374184
Sukardi, Puji Lestari
Published in Technometrics (Vol. 66, No. 3, 2024)
发表于《技术计量学》(第 66 卷第 3 期,2024 年)
{"title":"Statistical Inference Based on Kernel Distribution Function Estimators","authors":"Sukardi, Puji Lestari","doi":"10.1080/00401706.2024.2374184","DOIUrl":"https://doi.org/10.1080/00401706.2024.2374184","url":null,"abstract":"Published in Technometrics (Vol. 66, No. 3, 2024)","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"29 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Networking Statistical Mechanics in the Age of AI and Machine Learning 人工智能和机器学习时代的分子网络统计力学
IF 2.5 3区 工程技术 Q1 STATISTICS & PROBABILITY Pub Date : 2024-08-07 DOI: 10.1080/00401706.2024.2374188
Zulfaidil, La Ode Muhamad Iqbal, Riani Utami, Sri Redjeki Pudjaprasetya, Warsoma Djohan
Published in Technometrics (Vol. 66, No. 3, 2024)
发表于《技术计量学》(第 66 卷第 3 期,2024 年)
{"title":"Molecular Networking Statistical Mechanics in the Age of AI and Machine Learning","authors":"Zulfaidil, La Ode Muhamad Iqbal, Riani Utami, Sri Redjeki Pudjaprasetya, Warsoma Djohan","doi":"10.1080/00401706.2024.2374188","DOIUrl":"https://doi.org/10.1080/00401706.2024.2374188","url":null,"abstract":"Published in Technometrics (Vol. 66, No. 3, 2024)","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"95 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Technometrics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1