{"title":"Uranium migration lengths in Opalinus Clay depend on geochemical gradients, radionuclide source term concentration and pore water composition","authors":"Theresa Hennig, Michael Kühn","doi":"10.5194/adgeo-62-21-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Safety assessments of highly radioactive waste disposal sites are done based on simulation of radionuclide migration lengths through the containment providing rock zone. For a close to real case situation, the present model concept established for uranium is derived from the hydrogeological evolution and geochemical and mineralogical data measured at the deep geothermal borehole Schlattingen including the effect of geo-engineered barriers on the source term. In the Schlattingen area, the Opalinus Clay is tectonically undeformed compared to the Mont Terri anticline and represents the geochemical and temperature conditions at the favoured disposal depth. The geochemical conditions are more or less constant with slightly decreasing concentrations of pore water components towards the footwall aquifer. Uranium migrates less compared to the Opalinus Clay system at Mont Terri, where gradients of pore water geochemistry towards the embedding aquifers are more pronounced. This means, stable geochemical conditions with no or low concentration gradients are to be favoured for a safe disposal since migration lengths strongly depend on spatial and temporal variation of the hydrogeological and geochemical conditions within the host formation. The engineered barriers reduce the source term concentration what, in turn, is associated with a decrease in uranium migration. Stable geochemical conditions further enable the application of the Kd approach to estimate the impact of the barriers. The hydrogeological system must always be considered when quantifying radionuclide migration.","PeriodicalId":7329,"journal":{"name":"Advances in Geosciences","volume":"2675 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/adgeo-62-21-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Safety assessments of highly radioactive waste disposal sites are done based on simulation of radionuclide migration lengths through the containment providing rock zone. For a close to real case situation, the present model concept established for uranium is derived from the hydrogeological evolution and geochemical and mineralogical data measured at the deep geothermal borehole Schlattingen including the effect of geo-engineered barriers on the source term. In the Schlattingen area, the Opalinus Clay is tectonically undeformed compared to the Mont Terri anticline and represents the geochemical and temperature conditions at the favoured disposal depth. The geochemical conditions are more or less constant with slightly decreasing concentrations of pore water components towards the footwall aquifer. Uranium migrates less compared to the Opalinus Clay system at Mont Terri, where gradients of pore water geochemistry towards the embedding aquifers are more pronounced. This means, stable geochemical conditions with no or low concentration gradients are to be favoured for a safe disposal since migration lengths strongly depend on spatial and temporal variation of the hydrogeological and geochemical conditions within the host formation. The engineered barriers reduce the source term concentration what, in turn, is associated with a decrease in uranium migration. Stable geochemical conditions further enable the application of the Kd approach to estimate the impact of the barriers. The hydrogeological system must always be considered when quantifying radionuclide migration.
Advances in GeosciencesEarth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
3.70
自引率
0.00%
发文量
16
审稿时长
30 weeks
期刊介绍:
Advances in Geosciences (ADGEO) is an international, interdisciplinary journal for fast publication of collections of short, but self-contained communications in the Earth, planetary and solar system sciences, published in separate volumes online with the option of a publication on paper (print-on-demand). The collections may include papers presented at scientific meetings (proceedings) or articles on a well defined topic compiled by individual editors or organizations (special publications). The evaluation of the manuscript is organized by Guest-Editors, i.e. either by the conveners of a session of a conference or by the organizers of a meeting or workshop or by editors appointed otherwise, and their chosen referees.